Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gt:
TG ABC có góc B=90độ
MA=MC; MF_I_AB; ME_I_BC; MN_I_AB; FN=NM; AB=3cm;AC=5cm
KL:(a) TG BEMF là hình chữ nhật
(b) TG BMAN là hình thoi
(c) Sbemf=?
Giải:
(a) Hứơng c/m " là tứ giác có 3 góc vuông"=> chỉ cần c/m 3 là đủ
(1)Góc B vuông theo (gt)
(2)góc MEB (có mũ trên ghét làm hình) là vậy vuông (gt)
(3)góc MFB vuông theo (gT)
=> dpcm
(b) Hướng chứng minh " tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường và vuông góc với nhau là hình thoi"
(1) Theo cách dựng hình MN & AB chính là hai đường chéo
(2) MN_I_AB theo (gt)
(3) MF=FN (gt) giải thích thêm N đối xứng của M qua F tất nhiên F phải là trung điểm
(4)FA=FB vì MF vuong góc với AB (gt) => MF// BC mà MA=MC (gt)=> theo tính chất Tam giác (ABC) MF chính là đường trung bình => FA=FB (*)
Vậy MN cắt AB tại trung điểm F đồng thời vuông góc với nhau => dpcm
(c) diện tích hình chữ nhật BEMF (hôm trước là tam giác mà)
(*)
BF=AB/2=3/2
BE=BC/2=4/2=2 {BC=4 theo hệ thức trong tam giác vuông 3^2+4^2=5^2)
=>S=3/2*2=3(cm^2)
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c,
S BEMF = 6X10= 60
ht
A B C M E F N
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c, MF là đtb của tam giác ABC (câu a)
=> MF = BC/2 ; BC = 4 (Gt)
=> MF = 2
tương tự tính ra BF = 1,5
=> S BEMF = 4.1,5 = 6
b)có AM=MC (định lý đường trug tuyến tg vuông)
suy ra tg AMC cân tại M. gọi MN cắt AC tại O
mà MO là đg cao( AO vuông góc vs AC)
suy ra MO là trug tuyến (trog tg vuông 1 đg đóng vtro các đg còn lại) suy ra AO=OC
xét tứ giác MANC có: MO=NO; AO=OC suy ra tứ giác này là hình bình hành
có MN vuông góc vsAC suy ra tứ giác này là hình thoj(dấu hiệu nhận biết)
c) có AM=MB (đg trug tyến tg vuông) suy ra tg AMB cân tại M
suy ra BE=AE(1 đg đóng vtro các đg còn lại)
suy ra EA=3cm
có AF=FC( t'c hình thoi)
suy ra AF=4cm
S hình chữ nhật EMFA là;
3 nhân 4 +12(cm2)
(Hình bạn tự vẽ nha)
a ,
Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .
b ,
Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB
Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .
-> AC là đường trung trực của MN
->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .
-> Tứ giác MANC là hình thoi.
c ,
Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)
Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .
-> AE = EB (2)
Vì tứ giác MANC là hình thoi nên AF=FC (3)
Từ (1),(2) và (3) suy ra BE = FC (4)
Từ (1) và (4) suy ra : AE + BE = AF + FC
hay AB = AC
-> Tam giác ABC là tam giác vuông cân .
Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .
b ơi b có kiến thức cơ bản không để mình chỉ hướng dẫn b làm th chứ làm hết dài lắm
a) MF _I_AB=> MF//BC; ME_I_BC=> ME//AB=> Tứ giác BEMF có các cặp cạnh song song Lại có góc B, E,F vuông theo cách dựng => góc M cũng vuông=> dpcm
b)
(vì MF _I_AB=> N thuộc MF
AB_I_MF=> AB_I_ MN
AB, MN là hai đường chéo tứ GiÁC BMAN
F là trung điểm MN do N đối xứng của M qua F
F trung điểm của AB do MF// BC và M là trung điểm của BC theo giải thiết
Tứ giác có hai dduongf chéo vuông góc và cắt nhau tại trung điểm mõi dduongf là hình thoi=> dpcm
c)
AB=3=> BF=1,5
AC=5=> BE=2,5
SBEMF=1,5.2.5=37,5 (cm^2)