Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ACD và tam giác ECD(đều là vuông)
ECD=DCA(Vì CD là p/giác)
CD là cạnh chung
\(\Rightarrow\)tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)
b)Vì tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)
\(\Rightarrow\)AD=DE(cạnh cặp tương ứng)
\(\Rightarrow\)D cách đều hai mút của AE
\(\Rightarrow\)CD là đường trung trực của AE
Do đó CI\(\perp\)AE
\(\Rightarrow\)Tam giác CIE là tam giác vuông
c)Vì AD=DE(câu b)
Mà tam giác BDE là tam giác vuông(tại E)
\(\Rightarrow\)DE<BD(cạnh góc vuông nhỏ hơn cạnh huyền)
\(\Rightarrow\)AD<BD(đpcm)
d)Kéo dài BK cắt AC tại O
Vì BK\(\perp\)CD(gt)
\(\Rightarrow\)CK là đường cao thứ nhất của tam giác OBC(1)
Vì tam giác ABC vuông tại A
Nên BA\(\perp\)AC
\(\Rightarrow\)BA là đường cao thứ hai của tam giác OBC(2)
Theo đề bài ta có DE\(\perp\)BC
Nên DE là đường cao thứ ba của tam giác OBC(3)
Từ (1),(2) và (3) suy ra:
Ba đường cao giao nhau tại một điểm trùng với điểm D
\(\Rightarrow\) 3 đường thẳng AC;DE;BK đồng quy(đpcm)
a)Xét tam giác BAD và BED(đều là ta giác vuông)
BD là cạnh chung
ABD=DBE(Vì BD là tia p/giác)
\(\Rightarrow\)tam giác BAD=tam giác BED(cạnh huyền góc nhọn)
\(\Rightarrow\)AB=BE(cặp cạnh tương ứng)
b)Vì tam giác BAD=tam giác BED(cạnh huyền góc nhọn)
\(\Rightarrow\)DA=DE(cặp cạnh tương ứng)
Xét tam giác ADF và EDCđều là ta giác vuông)
DA=DE(CMT)
ADF=EDC(đđ)
\(\Rightarrow\)tam giác ADF=tam giác EDC(cạnh góc vuông góc nhọn)
\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)
Do đó tam giác DFC cân tại D(vì DF=DC)
c)Vì DA=DE(CMT)\(\Rightarrow\)tam giác DAE can tại D
Mà ADE=FDC(đđ)
Mà hai tam giác DAE và CDF cân
Do đó:DAE=DEA=DFC=DCF
\(\Rightarrow\)AE//FC vì DFC=DAE
Bài 2:
Giải:
Đổi \(0,6=\frac{3}{5}\)
Tổng độ dài 2 cạnh là:
32 : 2 = 16 ( cm )
Gọi độ dài 2 cạnh của hình chữ nhật là a, b
Ta có: \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\) và a + b = 16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{16}{8}=2\)
+) \(\frac{a}{3}=2\Rightarrow a=6\)
+) \(\frac{b}{5}=2\Rightarrow b=10\)
Vậy chiều dài 2 cạnh của hình chữ nhật là 6 cm; 10 cm
Bài 3:
Ta có: \(y=f\left(x\right)=x2-1\)
Khi \(f\left(x\right)=1\)
\(\Rightarrow1=x2-1\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
a: AH<AD
=>H nằm giữa B và D
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
=>EA=ED
mà BA=BD
nên BE là trung trực của AD
c: góc CAD+góc BAD=90 độ
góc HAD+góc BDA=90 độ
mà góc BAD=góc BDA
nên góc CAD=góc HAD
=>AD là phân giác của góc HAC
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE