Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I K
a) Ta có:
\(\left\{\begin{matrix}AB\perp AC\\KH\perp AC\end{matrix}\right.\) => AB // HK
b) Vì KH \(\perp\) AC nên \(\widehat{AHK}\) = \(\widehat{AHI}\) = 90o
Xét \(\Delta\)AHK và \(\Delta\)AHI có:
HK = HI (gt)
\(\widehat{AHK}\) = \(\widehat{AHI}\) (chứng minh trên)
AH chung
=> \(\Delta\)AHK = \(\Delta\)AHI (c.g.c)
=> AK = AI (2 cạnh tương ứng)
nên \(\Delta\)AKI cân tại A.
c) Vì AB // HK (câu a)
nên \(\widehat{BAK}\) = \(\widehat{AKI}\) (so le trong) (1)
Vì \(\Delta\)AKI cân (câu b)
nên \(\widehat{AKI}\) = \(\widehat{AIK}\) (góc đáy) (2)
Từ (1) và (2) suy ra \(\widehat{BAK}\) = \(\widehat{AIK}\).
d) Vì \(\Delta\)AHK = \(\Delta\)AHI (câu b)
nên \(\widehat{IAC}\) = \(\widehat{KAC}\) (2 góc tương ứng)
Xét \(\Delta\)AIC và \(\Delta\)AKC có:
AI = AK (câu b)
\(\widehat{IAC}\) = \(\widehat{KAC}\) (cm trên)
AC chung
=> \(\Delta\)AIC = \(\Delta\)AKC (c.g.c)
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
tra loi ho minh nhanh len giup minh voi