K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

Ôn tập cuối năm phần số học

NV
28 tháng 3 2019

A B C G M N P Q D

Gọi D là trung điểm BC, lần lượt kẻ BP và CQ song song MN

\(\Rightarrow AG=\frac{2}{3}AD\)

\(\left\{{}\begin{matrix}\widehat{QCD}=\widehat{PBD}\left(slt\right)\\BD=DC\left(gt\right)\\\widehat{CDQ}=\widehat{PDQ}\left(dd\right)\end{matrix}\right.\) \(\Rightarrow\Delta CDQ=\Delta BDP\Rightarrow DQ=DP\)

\(MG//BP\Rightarrow\frac{AB}{AM}=\frac{AP}{AG}=\frac{AD+DP}{AG}\)

\(GN//CQ\Rightarrow\frac{AC}{AN}=\frac{AQ}{AG}=\frac{AD-DQ}{AG}\)

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AD+DP+AD-DQ}{AG}=\frac{2AD}{AG}=\frac{2AD}{\frac{2}{3}AD}=3\)

17 tháng 1 2018

a) A B C D O M N

Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)

=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)

=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)

=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)

Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)

=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)

Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)

=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)

Từ (1), (2),(3):

=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)

=> MO=NO(dpcm)

CHÚC BẠN HỌC TỐT!

17 tháng 1 2018

mK GIẢI CÂU 1

3 tháng 4 2019

câu trả lời tại đây

https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m.+Qua+G+v%E1%BA%BD+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+d+c%E1%BA%AFt+hai+c%E1%BA%A1nh+AB+v%C3%A0+AC+t%E1%BA%A1i+D+v%C3%A0+E.+Ch%E1%BB%A9ng+minh:+AB/AD=AC/AE=3&id=516183

27 tháng 3 2017

A B C D F O E K I

a)

Xét tam giác ABF và tam giác ACB có:

BAC chung

ABF = ACB (gt)

=> Tam giác ABF ~ Tam giác ACB (g - g)

=> \(\dfrac{\text{AF}}{AB}=\dfrac{AB}{AC}\)

=> \(\dfrac{\text{AF}}{4}=\dfrac{4}{8}\)

=> AF = 2 (cm)

Ta có:

AF + FC = AC

2 + FC = 8

FC = 6 (cm)

b)

D là trung điểm của BC (AD là đường trung tuyến của tam giác ABC)

=> \(DC=\dfrac{1}{2}BC\)

Kẻ đường cao AH (H \(\in\) BC)

Ta có: \(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{\dfrac{1}{2}\times AH\times AB}{\dfrac{1}{2}\times AH\times DC}=\dfrac{AB}{\dfrac{1}{2}AB}=2\)

=> SABC = 2SADC

c)

Tam giác CKA có OF // KA (gt) nên theo định lý Talet

=> \(\dfrac{FC}{FA}=\dfrac{OC}{OK}\left(1\right)\)

Tam giác OCI có KA // CI (gt) nên theo hệ quả của định lý Talet

=> \(\dfrac{OC}{OK}=\dfrac{CI}{KA}\left(2\right)\)

(1) và (2)

=> \(\dfrac{FC}{FA}=\dfrac{CI}{KA}\)

d)

Tam giác DCI có CI // BO nên theo hệ quả của định lý Talet

=> \(\dfrac{DB}{DC}=\dfrac{BO}{CI}\)

Tam giác EBO có AK // BI nên theo hệ quả của định lý Talet

=> \(\dfrac{EA}{EB}=\dfrac{AK}{BO}\)

Ta có:

\(\dfrac{DB}{DC}\times\dfrac{EA}{EB}\times\dfrac{FC}{FA}=\dfrac{BO}{CI}\times\dfrac{AK}{BO}\times\dfrac{CI}{KA}=1\)

27 tháng 3 2017

ohhhhhh batngo

phải gọi là max dài luôn á