K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

1 ) 

Xét \(\Delta AMB\)và \(\Delta CMN\)có :

BM = NM ( gt )

\(\widehat{AMB}=\widehat{CMN}\) ( đối đỉnh )

CM = AM ( gt)

=> \(\Delta AMB=\Delta CMN\left(c.g.c\right)\)

=> CN = AB

và \(\widehat{MCN}=90^o\) ( hay \(\widehat{ACN}=90^o\) )

=> \(CN\perp AC\)

2 ) Dễ cm \(\Delta AMN=\Delta CMB\left(c.g.c\right)\)

=> AN = BC 

và \(\widehat{BCM}=\widehat{MAN}\) mà 2 góc này ở vị trí so le trong => BC//AN

3)

Dễ cm \(\Delta BAN=\Delta NCB\left(c.c.c\right)\)

4 ) 

Dễ cm \(\Delta BAC=\Delta NCA\left(c.c.c\right)\)

30 tháng 12 2016

hình vẽ đấy nhé

GIAI

a ) xét tam giác AMB và tam giác CMN có

AM = MC ( M là trung điểm của AC )

góc AMB = goc CMN ( đối đỉnh )

MB = MN ( M là trung điểm của BN )

=> tam giác AMB = tam giác CMN ( c.g.c)

=> AB = CN ( 2 cạnh tương ứng )

=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )

=> CN vuông góc với AC (dpcm )

b ) chúng minh tương tự

=> tam giác ANM = tam giác CBM ( c.g.c )

=> AN = BC ( 2 cạnh tương ứng )

=> góc ANM = góc CBM ( 2 góc tương ứng )

mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC

=> AN song song BC ( dpcm)

NHANH NHA

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
22 tháng 10 2021

a: Xét ΔCMN và ΔAMB có 

MC=MA

\(\widehat{CMN}=\widehat{AMB}\)

MN=MB

Do đó: ΔCMN=ΔAMB

Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB

hay CN\(\perp\)AC

24 tháng 12 2016

Ta có hình vẽ sau:

B A C I M N

a/ Xét ΔABI và ΔACI có:

AI: Cạnh chung

AB = AC (gt)

BI = CI (gt)

=> ΔABI = ΔACI (c.c.c) (đpcm)

=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng)

=> AI là tia p/g của \(\widehat{BAC}\) (đpcm)

b/ Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ABM}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^o\) (kề bù)

=> \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có:

BM = CN (gt)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

AB = AC (gt)

=> ΔABM = ΔACN (c.g.c)

=> AM = AN(2 cạnh tương ứng) (đpcm)

c/ Vì ΔABI = ΔACI (ý a)

=> \(\widehat{AIB}=\widehat{AIC}\) (2 cạnh tương ứng)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)

=> \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)

=> \(AI\perp BC\left(đpcm\right)\)

24 tháng 12 2016

ta có hình vẽ sau:

Hỏi đáp Toán

a) xét \(\Delta ABI\)\(\Delta ACI\) có:

\(AB=AC\left(gt\right)\)

\(I\) là cạnh chung

\(BI=CI\left(gt\right)\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Delta ABI=\Delta ACI\) nên \(\widehat{ABI}=\widehat{ACI}\) (hai góc tương ứng)

\(I\in BC\left(gt\right)\)\(BI=CI\left(gt\right)\) nên \(AI\) là tia phân giác của \(\widehat{BAC}\)

c) \(I\) là trung điểm của \(BC\) (1)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (2)

Từ (1) và (2) \(\Rightarrow AI\perp BC\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) hay \(\widehat{AIM}=\widehat{AIN}\) ( vì \(N;M\in BC\)\(CN=BM\left(gt\right)\))

\(\Rightarrow IM=IN\) (hai cạnh tương ứng)

b) xét \(\Delta AIM\)\(\Delta AIN\) có:

\(AI\) là cạnh chung

\(\widehat{AIM}=\widehat{AIN}=90^o\) \(\left(cmt\right)\)

\(IM=IN\left(cmt\right)\)

\(\Rightarrow\Delta AIM=\Delta AIN\left(c.g.c\right)\)

\(\Rightarrow AM=AN\) (2 cạnh tương ứng)

 

 

 

 

 

 

 

25 tháng 12 2019
ccccc 
ccccccc 
  
10 tháng 4 2020

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

12 tháng 4 2020

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)