Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ đấy nhé
GIAI
a ) xét tam giác AMB và tam giác CMN có
AM = MC ( M là trung điểm của AC )
góc AMB = goc CMN ( đối đỉnh )
MB = MN ( M là trung điểm của BN )
=> tam giác AMB = tam giác CMN ( c.g.c)
=> AB = CN ( 2 cạnh tương ứng )
=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )
=> CN vuông góc với AC (dpcm )
b ) chúng minh tương tự
=> tam giác ANM = tam giác CBM ( c.g.c )
=> AN = BC ( 2 cạnh tương ứng )
=> góc ANM = góc CBM ( 2 góc tương ứng )
mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC
=> AN song song BC ( dpcm)
a: Xét ΔCMN và ΔAMB có
MC=MA
\(\widehat{CMN}=\widehat{AMB}\)
MN=MB
Do đó: ΔCMN=ΔAMB
Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB
hay CN\(\perp\)AC
b/ Xét tam giác AMN và tam giác CMB có:
BM=MN(cmt)
AM=MC(cmt)
Góc AMN= góc CMB( đối đỉnh)
Vậy tam giác AMN = tam giác CMB(c-g-c)
=> AN=BC(hai canh tương ứng)
góc BCM=góc MAN(2 góc tương ứng)
Do góc BCM và góc MAN là cặp góc so le trong bằng nhau nên AN//BC
A B C N M
a, Xét t/g AMB và t/g CMN có:
AM=CM(gt)
MB=MN(gt)
góc AMB=góc CMN (đối đỉnh)
=> t/g AMB=t/g CMN (c,g.c)
=> góc MAB = góc MCN = 90 độ (2 góc t/ứ) ; AB = CN (2 cạnh t/ứ)
=> CN _|_ AC
b, Xét t/g AMN và t/g CMB có:
AM=CM(gt)
MN=MB(gt)
góc AMN=góc CMB (đối đỉnh)
=> t/g AMN = t/g CMB (c.g.c)
=> AN = BC (2 cạnh t/ứ) ; góc ANM = góc CBM (2 góc t/ứ)
=> AN//BC (vì có 2 góc so le trong bằng nhau)
M B A C N A) Xét tam giác BAM và tam giác NCM ta có
AM = MC (gt)
\(\widehat{CMN}\)= \(\widehat{AMB}\) (hai góc đối đỉnh)
BM=MN (gt)
\(\Rightarrow\)\(\bigtriangleup\)BAM=\(\bigtriangleup\)NCM
\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{NCM}\)
mà \(\widehat{BAM}\)=90độ \(\Rightarrow\)\(\widehat{NCM}\)=90độ
B) xét tam giác BAC và tam giác NCA ta có
NC=BA (hai cạnh tương ứng)
ACM=BAC
AC cạnh chung
\(\Rightarrow\)tam giác BAC = tam giác NAC
\(\Rightarrow\)AN=BC (hai cạnh tương ứng)
Vì góc BAC và góc NCA là hai góc so le trong mà lại nhau
\(\Rightarrow\)AN \\ BC
nha
Ta có hình vẽ sau:
B A C I M N
a/ Xét ΔABI và ΔACI có:
AI: Cạnh chung
AB = AC (gt)
BI = CI (gt)
=> ΔABI = ΔACI (c.c.c) (đpcm)
=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng)
=> AI là tia p/g của \(\widehat{BAC}\) (đpcm)
b/ Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ABC}+\widehat{ABM}=180^o\) (kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^o\) (kề bù)
=> \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có:
BM = CN (gt)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
AB = AC (gt)
=> ΔABM = ΔACN (c.g.c)
=> AM = AN(2 cạnh tương ứng) (đpcm)
c/ Vì ΔABI = ΔACI (ý a)
=> \(\widehat{AIB}=\widehat{AIC}\) (2 cạnh tương ứng)
mà \(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)
=> \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)
=> \(AI\perp BC\left(đpcm\right)\)
ta có hình vẽ sau:
a) xét \(\Delta ABI\) và \(\Delta ACI\) có:
\(AB=AC\left(gt\right)\)
\(I\) là cạnh chung
\(BI=CI\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)
vì \(\Delta ABI=\Delta ACI\) nên \(\widehat{ABI}=\widehat{ACI}\) (hai góc tương ứng)
\(I\in BC\left(gt\right)\) và \(BI=CI\left(gt\right)\) nên \(AI\) là tia phân giác của \(\widehat{BAC}\)
c) \(I\) là trung điểm của \(BC\) (1)
\(\widehat{AIB}+\widehat{AIC}=180^o\) (2)
Từ (1) và (2) \(\Rightarrow AI\perp BC\)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) hay \(\widehat{AIM}=\widehat{AIN}\) ( vì \(N;M\in BC\) và \(CN=BM\left(gt\right)\))
\(\Rightarrow IM=IN\) (hai cạnh tương ứng)
b) xét \(\Delta AIM\) và \(\Delta AIN\) có:
\(AI\) là cạnh chung
\(\widehat{AIM}=\widehat{AIN}=90^o\) \(\left(cmt\right)\)
\(IM=IN\left(cmt\right)\)
\(\Rightarrow\Delta AIM=\Delta AIN\left(c.g.c\right)\)
\(\Rightarrow AM=AN\) (2 cạnh tương ứng)