Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCMDEIK
Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)
=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.
=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)
Mà AD = AE = AM
=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)
\(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)
=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC
tam giác ABC vuông ở A cho ta góc BAC =90 độ
MD vuông góc với AB => góc MDA =90 độ
ME vuông góc với AC => góc MEA =90 độ
=> tứ giác ADME là hình chữ nhật => DE=AM =>DE min<=> AM min <=> AM vuông góc với BC
Vậy M là chân đường cao kẻ từ A , M thuộc BC thì DE có độ dài nhỏ nhất
A B C M P Q D E 1 2 3 4 2 2 1 1
a) Dễ thấy tứ giác ADME có 3 góc vuông nên nó là hình chữ nhật.
Tam giác PBM co BP là đường trung trực nên nó là tam giác cân. Vậy thì BP là phân giác hay \(\widehat{B_1}=\widehat{B_2}\)
Tương tự \(\widehat{C_1}=\widehat{C_2}\) mà \(\widehat{B_1}+\widehat{C_1}=90^o\) nên \(\widehat{PBM}+\widehat{MCQ}=2\left(\widehat{B_1}+\widehat{C_1}\right)=180^o\)
Chúng lại ở vị trí trong cùng phía nên PB // QC
Vậy BCQP là hình thang.
b) Áp dụng Pi-ta-go : \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.6.8=24\left(cm^2\right)\)
c) Do AB là trung trực PM nên AP = AM
Tương tự AQ = AM nên AP = AQ.
Lại có \(\widehat{A_1}=\widehat{A_2};\widehat{A_3}=\widehat{A_4}\) mà \(\widehat{A_2}+\widehat{A_3}=90^o\Rightarrow\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=180^o\)
hay A, P, Q thẳng hàng.
Từ đó ta có A là trung điểm PQ.
d) Gọi AH là đường cao hạ từ A xuống BC.
Ta có
\(P_{PBCQ}=PQ+PB+BC+CQ=2AM+PB+BM+MC+CQ=2AM+2BC=2\left(AM+BC\right)\)
Áp dụng bất đẳng thức Cô-si ta thấy \(AM+BC\ge2\sqrt{AM.BC}\)
mà AM là đường xiên nên \(AM\ge AH\)
Vậy thì \(AM+BC\ge2\sqrt{AM.BC}\ge2\sqrt{AH.BC}=2\sqrt{AB.AC}\)
Vậy thì \(minP_{PBCQ}=2\sqrt{AB.AC}\) khi M là chân đường cao hạ từ A xuống BC.
- Nối A và M với nhau.
- Gọi H là giao điểm giữa ME và AC.
- Gọi O là giao điểm giữa AB và MD.
Xét tam giác AME, có:
* AH là đường cao ( AH là đường trung trực)
* AH là đường trung tuyến (AH là đường trung trực)
=> tam giác AME cân tại A
=> AM = AE (1)
Và AM = AD (chứng minh tương tự) (2)
Từ (1), (2) => AE = AD
=> A là trung điểm của DE.
a/ Nối AM
- Do D đối xứng với M qua AB => AB là đường trung trực của MD
=> AD=AM (t/c đường trung trực)
- Do E đối xứng với M qua AC => AC là đường trung trực của ME
=> AE=AM (t/c đường trung trực)
Từ đó suy ra: AD=AE hay A là trung điểm của DE hay D đối xứng với E qua A (đpcm)
b/ Ta có: AM=AE (cmt)
- Tứ giác MAEC có: AE=AM => Tứ giác MAEC là hình thoi => CE // AM
Tương tự ta cũng có: AM=AD (cmt)
- Tứ giác ADBM có: AM=AD => Tứ giác ADBM là hình thoi => BD // AM
Từ đó suy ra được: BD // CE (đpcm)
c/ Điểm M phải là trung điểm của BC thì DE mới có độ dài nhỏ nhất
A A A B B B C C C M M M D D D E E E
Do E đối xứng với M qua AC nên AC là đường trung trực EM.
Do đó AE = AM (1). Tương tự AD = AM (2)
Cộng theo vế (1) và (2) suy ra AE + AD = 2AM. (3)
*Chứng minh A, E, D thẳng hàng
Theo (1) thì AE = AM -> tam giác AEM cân tại A.
Do đó \(\widehat{EAM}=180^o-2\widehat{EMA}\)(4)
Tương tự \(\widehat{MAD}=180^o-2\widehat{AMD}\)(5)
Cộng theo vế (4) và (5) suy ra ^EAD = 180o do đó D, E, A thẳng hàng => AE + AD = ED
Kết hợp (3) ED = 2AM . Hạ \(AH\perp BC\) thì \(AM\ge AH\)
Đẳng thức xảy ra khi M trùng H.
Do đó \(ED\ge2AM\ge2AH=const\)
Đẳng thức xảy ra khi M trùng H hay M là chân đường cao hạ từ A đến BC.
P/s: Mới học dạng này nên ko chắc..
À trong hình quên hạ AH vuông góc BC :P