K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

a) Xét tứ giác AIHK có \(\widehat{AIH}+\widehat{IAK}+\widehat{AKH}=270^o\Rightarrow\widehat{IHK}=90^o\)

Vậy nên \(HI\perp HK\)

b) Do IA và HK cùng vuông góc với AC nên IA // HK

Vậy thì \(\widehat{IAH}=\widehat{KHA}\)   (So le trong)

Xét tam giác IAH và tam giác KHA có:

\(\widehat{AIH}=\widehat{HKA}=90^o\)

Cạnh AH chung

\(\widehat{IAH}=\widehat{KHA}\)   

\(\Rightarrow\Delta AIH=\Delta HKA\)     (Cạnh huyền - góc nhọn)

\(\Rightarrow IA=HK.\)

c)  Xét tam giác IAH và tam giác HKI có:

\(\widehat{AIH}=\widehat{KHI}=90^o\)

Cạnh IH chung

\(IA=HK\)   

\(\Rightarrow\Delta AIH=\Delta KHI\)     (Hai cạnh góc vuông)

\(\Rightarrow AH=IK.\)

d) Ta thấy ngay các cặp góc so le trong bằng nhau nên \(\Delta IOA=\Delta KOH\left(g-c-g\right)\Rightarrow OI=OK,OA=OH\)

Xét tam giác vuông IAH có IO là trung tuyến ứng với cạnh huyền nên OH = OA = OI.

Vậy nên OA = OI = OH = OK.

e) 

1. Nếu tam giác ABC cân thì AH là đường cao đồng thời trung tuyến. Vậy thì AH = BH = CH.

Xét tam giác cân BHA có HI là đường cao nên đồng thời là đường trung tuyến. Vậy nên I là trung điểm AB.

Hoàn toàn tương tự ta có K là trung điểm AC.

2.  Tam giác ABC vuông cân tại A nên \(\widehat{ACB}=45^o\)

IA = AB/2; AK = AC/2 mà AB = AC nên AI = AK.

Vậy thì tam giác IAK cũng vuông cân tại A.

Vậy nên \(\widehat{AKI}=45^o\) 

Từ đó ta có \(\widehat{AKI}=\widehat{ACB}=45^o\)

Chúng lại ở vị trí đồng vị nên suy ra IK // BC.

f) Ta có AM = MC nên \(\widehat{MAC}=\widehat{MCA}\)

Lại có \(\widehat{MCA}=\widehat{AHK}\)   (Cùng phụ với góc \(\widehat{KHC}\)  )

Suy ra \(\widehat{MAC}=\widehat{AHK}\)

Lại có \(\widehat{OKA}=\widehat{OHA}\)

Vậy nên \(\widehat{MAK}+\widehat{OKA}=\widehat{AHK}+\widehat{IHA}=90^o\)

Gọi J là giao điểm của AM và IK thì \(\widehat{AJK}=90^o\)  hay \(KI\perp AM\)

30 tháng 4 2018

(Bạn tự vẽ hình giùm)

a/ Ta có \(\Delta ABC\)vuông tại A

=> BC2 = AB2 + AC2 (định lý Pitago)

=> BC2 = 62 + 82

=> BC2 = 36 + 64

=> BC2 = 100

=> \(BC=\sqrt{100}=10\)(cm)

b/ \(\Delta ABI\)vuông và \(\Delta HBI\)vuông có: \(\widehat{ABI}=\widehat{HBI}\)(BI là tia phân giác của \(\widehat{ABC}\))

Cạnh BI chung

=> \(\Delta ABI\)vuông = \(\Delta HBI\)vuông (ch - gn) (đpcm)

c/ Ta có \(\Delta ABI\)\(\Delta HBI\)(cmt) => \(\hept{\begin{cases}BA=BH\\IA=IH\end{cases}}\)(hai cặp cạnh tương ứng)

=> BI cách đều hai đầu đoạn thẳng AH

=> BI là đường trung trực của AH (đpcm)

d/ \(\Delta IHC\)vuông tại H có: IH < IC (quan hệ giữa đường vuông góc và đường xiên)

và IA = IH (cm câu c)

=> IA < IC (đpcm)

e/ Mình xin chỉnh lại đề: CMR: I là trực tâm \(\Delta KBC\)

\(\Delta AIK\)và \(\Delta HIC\)có: \(\widehat{IAK}=\widehat{IHC}=90^o\)(vì AC \(\perp\)BK, KH \(\perp\)BC)

IA = IH (cm câu c)

\(\widehat{AIK}=\widehat{HIC}\)(đối đỉnh)

=> \(\Delta AIK\)\(\Delta HIC\)(g. c. g) => AK = HC (hai cạnh tương ứng)

và AB = BH (cm câu c)

=> AK + AB = HC + BH

=> BK = BC

nên \(\Delta BKC\)cân tại B

=> Đường phân giác BI cũng là đường cao của \(\Delta BKC\)

=> BI \(\perp\)KC

Ta có: BI cắt KH tại I

Chứng minh:

Giả sử BI không cắt KH

=> BI // KH

Mà BI \(\perp\)KC (cmt)

=> KH \(\perp\)KC

và KH \(\perp\)BC (gt)

=> KC // BC

=> K, B, C thẳng hàng

Vô lý! (Vì K, B, C là ba đỉnh của một tam giác)

=> BI cắt KH tại I

=> I là trực tâm của \(\Delta KBC\)(đpcm)

30 tháng 4 2018

Bài này lớp 7 nên mik ko biết làm.

Nhưng bạn thử zô Câu hỏi tương tự ik

Nhỡ đâu có .

Hok tốt nha Hoa

14 tháng 6 2019

a ) Do AM là trung tuyến => BM = CM

Xét \(\Delta ABM\)và \(\Delta DCM\)có :

BM = CM ( cm trên )

\(\widehat{BMA}=\widehat{DMC}\)( hai góc đối đỉnh)

MA = MD ( gt )

nên \(\Delta ABM=\Delta DCM\)( c.g.c )

=> \(\widehat{ABM}=\widehat{MCD}\)( hai góc tương ứng )

mà hai góc này lại ở vị trí so le trong => AB//CD

14 tháng 6 2019

A B C D M K Q N I