K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
20 tháng 5 2019

a) \(\left\{{}\begin{matrix}\widehat{ABH}+\widehat{BAH}=90^o\\\widehat{HAC}+\widehat{BAH}=90^o\end{matrix}\right.\)

\(\Rightarrow\widehat{ABH}=\widehat{HAC}\)

+ ΔBME ∼ ΔAHC ( g.g )

b) \(\left\{{}\begin{matrix}\widehat{CAE}+\widehat{BAE}=90^o\\\widehat{AEC}+\widehat{EAH}=90^o\end{matrix}\right.\)

\(\Rightarrow\widehat{CAE}=\widehat{AEC}\) ( do \(\widehat{BAE}=\widehat{EAH}\) )

=> ΔAEC cân tại C

=> AC = CE

+ Tương tự ta cm đc :

ΔABD cân tại B => AB = BD

c) Xét ΔAHC có đg phân giác AD

\(\Rightarrow\frac{DH}{CD}=\frac{AH}{AC}=\frac{AH}{CE}\)

=> DH.CE = AH.CD

d) + AB + AC = BD + CE

= BD + CD + DE = BC + DE

20 tháng 5 2019

a) Xét 2 tam giác BME và tam giác AHC 

có \(\widehat{BME}=\widehat{AHC}=90^0\)

\(\widehat{ABC}chung\)

nên 2 tam giác BME và tam giác AHC đồng dạng với nhau

b)

xét tam giác ABH

có AE là phân giác của góc BAH

nên \(\widehat{MAE}=\widehat{HAE}\)

có \(\widehat{MAE}+\widehat{CAE}=90^0\)

\(\widehat{HAE}+\widehat{CEA}=90^0\)

suy ra \(\widehat{CAE}=\widehat{CEA}\)do đó tam giác AEc cân tại C

c)

xét tam giác AHC có 

AD là tia phân giác của góc HAC

nên \(\frac{HD}{CD}=\frac{AH}{AC}\Rightarrow AH\cdot CD=DH\cdot AC\)

lại có AC = EC

nên \(AH\cdot CD=EC\cdot AC\)

d)

chứng minh tương tự câu b

ta có tam giác ABD cân tại B

suy ra AB = BD

mà AC = EC

nên AB + AC  = BD + EC = BD + CD + ED = BC + DE

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số 

10 tháng 2 2018

kho ua

14 tháng 3 2023

a. Xét tam giác HAC và tam giác ABC, có:

\(\widehat{C}\) : chung

\(\widehat{AHC}=\widehat{BAC}=90^o\)

Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )

b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)

Áp dụng định lý pytago tam giác ABC, ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)

c. Tam giác AHB có phân giác AD:

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2) 

(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)