Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AKB và tam giác AKC có :
AB=AC ( gt )
AK : cạnh chung
BK=KC ( gt )
do đó tam giác AKB = tam giác AKC ( c.c.c )
b) Xét tam giác ABC có : AB=AC
suy ra tam giác ABC cân tại A
suy ra AK là đường trung trực và là đường cao
nên AK vuông góc với BC
c) Có AK vuông góc với BC , CE vuông góc với BC
suy ra EC//AK
a) Xét tam giác AKB và tam giác AKC có :
AB=AC(gt)
BK=CK(K la trung điểm BC)
AK chung
Suy ra: ΔAKB=ΔAKC(c.c.c)
Ta có: ΔAKB=ΔAKC(Cm trên)
Suy ra: góc AKB = góc AKC(2 góc tương ứng)
Mà góc AKB+góc AKC=180 độ(2 góc kề bù)
Suy ra:góc AKB= góc AKC=180 độ/2=90 độ
Suy ra:AK vuông góc BC
a)Xét tam giác AKB và tam giác AKC có :
AK là cạnh chung
AB=AC(gt)
BK=KC(K là trung điểm của BC)
=>Tam giác AKB=Tam giác AKC(c.g.c)
Ta có :
+ Góc AKB=Góc AKC (cmt)
Mà góc AKB + góc AKC=180o( 2 góc kề bù)
=> AKB=AKC=900
Vậy AK vuông góc BC
A B C E K
Giả thiết | AB = AC ; KB = KC ; \(\widehat{A}\)= 90O |
Kết luận | a) Tam giác AKB = AKC b) EC//AK c) CE = CB |
a) Xét \(\Delta AKB\)và \(\Delta AKC\text{ có : }\hept{\begin{cases}AB=AC\\KB=KC\\AK\text{ chung}\end{cases}\left(c.c.c\right)\Rightarrow\Delta AKB=\Delta AKC}\)
\(\Rightarrow\widehat{B}=C\text{ và }\widehat{ BAK}=\widehat{CAK}=\frac{1}{2}\widehat{A}=45^{\text{O}}\left(\text{góc tương ứng}\right)\)mà \(\widehat{B}+\widehat{C}=90^{\text{O}}\left(\widehat{A}=90^{\text{O}}\right)\Rightarrow\widehat{B}=\widehat{C}=45^{\text{O}}\)
=> \(\widehat{BKA}=180^{\text{O}}-\widehat{B}-\widehat{BAK}=90^{\text{O}}\)
=> AK vuông góc với BC
b) Vì góc C vuông
=> Góc B + Góc E = Góc C
=> Góc B + Góc E = 90O
=> Góc E = 45O
Vì góc BAC là góc ngoài của tam giác ACE
=> Góc ACE + Góc E = 90O (vì góc BAC = 90o)
=> Góc ACE = 45o
mà Góc KAC = Góc ACE ( = 45o) và cùng so le trong
=> AK // CE