K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Cách 1.

a) Theo đề bài, tam giác ABC vuông tại A nên \(\widehat {BAC} = {90^o}\) hay AB ⊥ AC.

Vì D, E lần lượt là trung điểm của AB, BC nên DE là đường trung bình của tam giác ABC suy ra DE // AC.

Mà AB ⊥ AC nên AB ⊥ DE hay \(\widehat {A{\rm{D}}E} = {90^o}\).

Tương tự, ta chứng minh được: EF ⊥ AC hay \(\widehat {AEF} = {90^o}\)

Ta có: \(\widehat {BAC} + \widehat {A{\rm{D}}E} + \widehat {AFE} + \widehat {DEF} = {360^o}\)

90°+90°+90o\( + \widehat {DEF}\) = 360o
270°+ \(\widehat {DEF}\)=360°

Suy ra \(\widehat {DEF}\)=360°−270°=90o

Tứ giác ADEF có \(\widehat {BAC} = {90^o};\widehat {A{\rm{D}}E} = {90^o};\widehat {AEF} = {90^o};\widehat {DEF} = {90^{^o}}\)

Do đó tứ giác ADEF là hình chữ nhật.

Suy ra hai đường chéo AE và DF bằng nhau.

Vậy AE = DF (đpcm).

b) Vì D, F lần lượt là trung điểm của AB, AC nên DF là đường trung bình của tam giác ABC.

Suy ra DF // BC hay DF // BE.

Vì tứ giác ADEF là hình chữ nhật nên AD // EF hay BD // EF.

Tứ giác BDFE có DF // BE và BD // EF nên tứ giác BDFE là hình bình hành.

Hình bình hành BDFE có hai đường chéo BF và DE.

Mà I là trung điểm của DE nên I cũng là trung điểm của BF.

Do đó, ba điểm B, I, F thẳng hàng.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1 2024

Cách 2.

a) Tam giác ABC vuông tại A, AE là tiếp tuyến (gt)

=> \(AE = \frac{1}{2}BC\) (1)

D, F lần lượt là trung điểm của AB, AC (gt)

=> \(DF = \frac{1}{2}BC\) (2)

Từ (1) và (2) => AE = DF.

b) DF là đường trung bình của tam giác ABC (cmt)

=> DF // BE (DF //BC) và DF = BE (DF = \(\frac{1}{2}\)BC = BE).

=> Tứ giác BDFE là hình bình hành => DE và BF cắt nhau tại trung điểm của mỗi đường.

I là trung điểm của DE (gt) => I là trung điểm của BF => B, I, F thẳng hàng.

a) Xét ∆ABC có : 

D là trung điểm AB 

E là trung điểm BC 

=> DE là đường trung bình ∆ABC 

=> DE//AC , DE = \(\frac{1}{2}AC\)\(\frac{16}{2}=8\)cm

Xét ∆ABC có : 

E là trung điểm BC 

F là trung điểm AC 

=> FE là đường trung bình ∆ABC 

=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)

Xét tứ giác AFED có : 

AD//EF ( AB//FE , D\(\in\)AB )

DE//FA ( DE//AC , F \(\in\)AC )

=> AFED là hình bình hành 

Mà BAC = 90° 

=> AFED là hình chữ nhật 

=> DEF= EFA = FAD = ADE = 90° 

Vì F là trung điểm AC 

=> FA = FC = 8cm

Áp dụng định lý Py - ta -go vào ∆AEF ta có : 

AE2 = FE2 + AF2 

=> AE = 10cm

b) Xét ∆ABC ta có : 

D là trung điểm AB 

F là trung điểm AC 

=> DF là đường trung bình ∆ABC 

=> DF//BC  

Xét tứ giác BEFD ta có : 

BE//DF ( BC//DF , E \(\in\)BC )

BD//FE ( AB//FE , D\(\in\)AB )

=> BEFD là hình bình hành 

c) Chứng minh trên 

3 tháng 11 2021

undefined

1 tháng 2 2018

Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo lời giải tại đây nhé.

18 tháng 4 2018

Bài 5:
Cho ABC vuông tại A, kẻ phân giác BM ( M AC), trên cạnh BC
lấy điểm E sao cho BE = AB
a) Chứng minh 2 tam giác BAM BEM .
b) Gọi F là giao điểm của đường thẳng ME và đường thẳng AB.
Chứng minh: FM = MC.
c) Chứng minh: AM < MC
d) Chứng minh AE // FC.

1 tháng 2 2018

a) Ta thấy ngay \(\Delta ABE=\Delta ACD\)  (Hai cạnh góc vuông)

b) Do \(\Delta ABE=\Delta ACD\Rightarrow\widehat{ABE}=\widehat{ACD}\)

mà \(\widehat{ABE}=\widehat{MAC}\)  (Cùng phụ với góc BEA)

\(\Rightarrow\widehat{MAC}=\widehat{MCA}\) hay tam giác MAC cân tại M.

c) Xét tam giác vuông ADC: \(\widehat{MCA}=\widehat{MAC}\Rightarrow\widehat{MDA}=\widehat{MAD}\Rightarrow MD=MA\)

Vậy thì DM = MA = MC hay M là trung điểm DC.

Xét tam giácAIC có M là trung điểm DC, MK // DI nên MK là đường trung bình tam giác DIC.

Suy ra K là trung điểm IC.

d) Xét tam giác DIC có IM và DK là hai trung tuyến nên G là trọng tâm tam giác.

Gọi N là giao điểm của CG với DE thì DN = NI.

Áp dụng định lý Talet ta có:

\(\frac{MF}{DN}=\frac{CF}{CN}=\frac{FK}{NI}\) 

Mà DN = NI nên MF = FK.