Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>AH=9,6(cm)
Xét ΔABC vuông tại A có
\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\)(1) và \(AN\cdot NC=HN^2\)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)
c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>AH=MN
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot MB=HM^2\)
\(AM\cdot AB+AN\cdot NC\)
\(=HM^2+HN^2\)
\(=MN^2=AH^2\)
d: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}\right)^2\cdot\dfrac{AC}{AB}\)
\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3=tan^3C\)
b: \(AN\cdot AC=AH^2\)
\(AC^2-HC^2=AH^2\)
Do đó: \(AN\cdot AC=AC^2-HC^2\)
a: ΔAHB vuông tại H có HM là đường cao
nên AM*MB=HM^2
ΔAHC vuông tại H có HN là đường cao
nên AN*NC=NH^2
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>MN^2=HM^2+HN^2
=AM*MB+AN*NC
b: ΔABC vuông tạiA có AH là đường cao
nên \(AB^2=BH\cdot BC;AC^2=CH\cdot CB\)
=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
\(HB=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HC=10-3,6=6,4cm
b: \(HM=\dfrac{4.8\cdot3.6}{6}=4.8\cdot0.6=2.88\left(cm\right)\)
\(HN=\dfrac{HA\cdot HC}{AC}=\dfrac{4.8\cdot6.4}{8}=4.8\cdot0.8=3.84\left(cm\right)\)
c: \(AB\cdot AM=AH^2\)
\(AC\cdot AN=AH^2\)
Do đó: \(AB\cdot AM=AC\cdot AN\)