K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)

\(HB=\dfrac{6^2}{10}=3.6\left(cm\right)\)

HC=10-3,6=6,4cm

b: \(HM=\dfrac{4.8\cdot3.6}{6}=4.8\cdot0.6=2.88\left(cm\right)\)

\(HN=\dfrac{HA\cdot HC}{AC}=\dfrac{4.8\cdot6.4}{8}=4.8\cdot0.8=3.84\left(cm\right)\)

c: \(AB\cdot AM=AH^2\)

\(AC\cdot AN=AH^2\)

Do đó: \(AB\cdot AM=AC\cdot AN\)

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=20^2-12^2=256\)

=>AC=16(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=9,6(cm)

Xét ΔABC vuông tại A có

\(sinABC=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

b: Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\)(1) và \(AN\cdot NC=HN^2\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(AH^2=AC^2-HC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AN\cdot AC=AC^2-HC^2\)

c: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

=>AH=MN

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot MB=HM^2\)

\(AM\cdot AB+AN\cdot NC\)

\(=HM^2+HN^2\)

\(=MN^2=AH^2\)

d: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)

\(=\left(\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}\right)^2\cdot\dfrac{AC}{AB}\)

\(=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3=tan^3C\)

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC

27 tháng 10 2021

Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=MN

31 tháng 10 2021

Oke ạ, may quá em làm đúng rồi ❤

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

13 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

b: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

=>MN=AH

mà AH=4,8cm

nên MN=4,8cm

13 tháng 12 2023

a) Để tính BC, ta sử dụng định lý Pythagoras trong tam giác vuông ABC:

BC^2 = AB^2 + AC^2

BC^2 = 6^2 + 8^2

BC^2 = 36 + 64

BC^2 = 100

BC = √100

BC = 10 cm

 

Để tính AH, ta sử dụng công thức diện tích của tam giác:

S = 1/2 * AB * AH

S = 1/2 * 6 * AH

S = 3AH

 

Vì tam giác ABC là tam giác vuông, nên diện tích tam giác ABC cũng có thể tính bằng cách sử dụng công thức diện tích tam giác vuông:

S = 1/2 * AB * AC

S = 1/2 * 6 * 8

S = 24

 

Vậy, ta có phương trình:

3AH = 24

AH = 8 cm

 

b) Để tính MN, ta sử dụng tỷ lệ giữa các đoạn thẳng trong tam giác đồng dạng. Ta có:

MN/BC = HM/AB = HN/AC

 

Vì HM và HN là đường cao của tam giác ABC, nên ta có:

HM = AH = 8 cm

HN = AH = 8 cm

 

Vậy, ta có:

MN/10 = 8/6

MN = (8/6) * 10

MN = 80/6

MN ≈ 13.33 cm