Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(HB.HC=15^2=225\)
Ta có : \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BH\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\hept{\begin{cases}\frac{HB}{HC}=\frac{25}{49}\\HB.HC=225\end{cases}\Rightarrow}\hept{\begin{cases}HB.HC.\frac{HB}{HC}=\frac{25}{49}.225\\HB.HC=225\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}HB^2=\frac{5625}{49}\\HB.HC=225\end{cases}\Rightarrow\hept{\begin{cases}HB=\frac{75}{7}\\HC=21\end{cases}}}\)
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Xét tam giác AHB đồng dạng với tam giác CHA góc-góc ( góc AHB=góc CHA; góc BAH = góc C do cùng phụ với góc B)
=> k= AH/HC=AB/AC=HB/AH
AB/AC=5/7
=>AB/AC=HB/AH hay 5/7=HB/15 -> HB = 75/7
AH/HC=AB/AC hay 15/HC=5/7 -> HC =21
Ta có : \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{225}=\frac{1}{\left(\frac{5}{7}AC\right)^2}+\frac{1}{AC^2}\Rightarrow AC=3\sqrt{74}\)cm
\(\Rightarrow AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\)
\(\Rightarrow BC=\frac{AB.AC}{AH}=\frac{3\sqrt{74}.\frac{15\sqrt{74}}{7}}{15}=\frac{222}{7}\)cm
Áp dụng định lí Pytago tam giác ABH vuông tại H
\(AB^2=BH^2+AH^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{75}{7}\)cm
\(\Rightarrow HC=BC-BH=\frac{222}{7}-\frac{75}{7}=\frac{147}{7}=21\)cm
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)
nên \(\dfrac{HB}{HC}=\dfrac{25}{49}\)
hay \(HB=\dfrac{25}{49}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2=15^2:\dfrac{25}{49}=441\)
\(\Leftrightarrow HC=21\left(cm\right)\)
\(\Leftrightarrow HB=\dfrac{75}{7}\left(cm\right)\)
Cho tam giác ABC vuông ở A. Biết \(\frac{AB}{AC}\)=\(\frac{5}{7}\), đường cao AH=15 cm. Tính HB, HC.
A B C H
Có: góc ABC + góc BAH = 900
góc HAC + góc BAH = 900
=> góc ABC = góc HAC
Xét tam giác AHC và tam giác BAC có:
góc ABC = góc HAC (chứng minh trên)
góc AHC = góc BAC (=900)
=> tam giác AHC đồng dạng với tam giác BAC
\(\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow\frac{AH}{HC}=\frac{AB}{AC}=\frac{5}{7}\Rightarrow HC=\frac{7}{5}.AH=\frac{7}{5}.15=21cm\)
Ta có: \(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{15^2}{21}=\frac{75}{7}cm\)
Vậy HB = 75/7 cm , HC = 21cm