K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 1 2023

a) \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\) (theo định lí Pythagore trong tam giác \(ABC\) vuông tại \(A\))

\(AI=\dfrac{1}{2}BC=2,5\left(cm\right)\).

b) Tứ giác \(ABMC\) có hai đường chéo \(AM,BC\) cắt nhau tại trung điểm mỗi đường nên \(ABMC\) là hình bình hành. 

Mà có \(\widehat{BAC}=90^o\) do đó \(ABMC\) là hình chữ nhật. 

c) Tứ giác \(AMCD\) có \(AD=AB=AM,AD//CM\) suy ra \(AMCD\) là hình bình hành. 

d) Gọi \(K\) là giao điểm của \(DM\) và \(AC\).

Do \(AMCD\) là hình bình hành nên hai đường chéo \(DM,AC\) cắt nhau tại trung điểm \(K\) của mỗi đường.

Xét tam giác \(ACM\): hai đường trung tuyến \(CI,MK\) cắt nhau tại \(G\) nên \(G\) là trọng tâm tam giác \(ACM\) suy ra \(MG=\dfrac{2}{3}MK=\dfrac{2}{3}.\dfrac{1}{2}MD=\dfrac{1}{3}MD\)

\(\Leftrightarrow DM=3GM\).

Giải thích các bước giải:

ta có: Tam giác ABC vuông tại A (gt)

=> AB^2+AC^2=BC^2

      6^2+8^2     =BC^2

       36+64         =BC^2

        100             =BC^2

     =>BC=10cm

Tam giác ABC vuông tại A có Am là đg trung tuyến

=> AM=BC/2=10/2=5cm

15 tháng 3 2020

HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ. 

Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.

b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.

=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.

Do đó ADMC là hình thang vuông.

c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)

=> D là trung điểm của AB.

Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)

Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)

Từ (1) và (2) => AEBM là hình thoi.

d) Vì AEBM là hình thoi => AE // BM, AE = BM. 

Mà BM = MC =>  AE // MC, AE = MC. Do đó AEMC là hình bình hành.

e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.

Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I. 

Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC. 

Mà AE // MC, AE = MC (cmt)

=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)

Vậy F đối xứng E qua A.

11 tháng 12 2020

undefined

11 tháng 12 2020

mong mọi người giúp hộ mình

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

1 tháng 11 2019

A F E D B C M

Mình vẽ hình hơi xâu, bạn thông cảm nhé!

a) Xét từ giác ABMC  có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)

                                    + DA = DM (gt)

                                    + DB = DM(gt)

suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật

1 tháng 11 2019

Các câu còn lại bạn đầu có thể giải theo cách trên nhé! 

( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)