K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2021

aai giúp mik bài nầy vs ạ

 

 

3 tháng 11 2021

ae lm dcd thì gúp vs nghe

 

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

28 tháng 11 2021
Công chúa thủy tế
1 tháng 1 2017

Vì M đối xứng với D qua AB(gt), E là giao điểm của DM và AB

\(\Rightarrow\left\{\begin{matrix}DE=ME\\DE\perp AB\end{matrix}\right.\)

Ta có: DE\(\perp\)AB(cmt), AC\(\perp\)AB( vì \(\Delta\)ABC vuông tại A)

\(\Rightarrow DE\)//AC

Xét tứ giác AEDC có DE//AC(cmt), \(\widehat{EAC}=90^0\)

\(\Rightarrow AEDC\) là hình thang vuông

Xét \(\Delta ABC\) có: D là trung điểm của BC(gt)

DE//AC(cmt)

\(\Rightarrow\) AE=BE(Trong một tam giác, đường thẳng đi qua trung điểm một cạnh và song song với cạnh thứ hai thì đi qua trung điểm cạnh còn lại)

Xét tứ giác ADBM có: DE=ME(cmt), AE=BE(cmt)

\(\Rightarrow\)ADBM là hình bình hành

Mà hình bình hành ADBM có: DE\(\perp\)AB(cmt)

\(\Rightarrow\) ADBM là hình thoi

Tứ giác ADBM là hình vuông khi tam giác ABC là tam giác vuông cân

25 tháng 11 2018

a) Ta có: \(\left\{{}\begin{matrix}ED\perp AB\left(gt\right)\\AC\perp AB\left(gt\right)\end{matrix}\right.\)

=> ED // AC

Xét tứ giác EDCA có :

ED // AC (cmt)

=> EDAC là hình thang

\(\widehat{DEA}=90^0\)

=> EDAC là hình thang cân.

b) Xét \(\Delta ABC\) có:

D là trung điểm của của Bc (gt)

ED // AC ( EDCA là hình thang vuông)

=> E là trung điểm của AB.

Xét tứ giác MBDA có:

E là trung điểm của AB (cmt)

E là trung điểm của MD ( M đối xứng D qua E)

=> MBDA là hình bình hành

có BA \(\perp\) MD

=> MBDA là hình thoi.

c) Để tứ giác MBDA là hình vuông

thì \(\widehat{BDA}=90^0\)

Để \(\widehat{BDA}=90^0\) thì

AD \(\perp\) BC

=> AD là đường cao của \(\Delta ABC\)

=> \(\Delta ABC\) phải là tam giác vuông cân ( vuông cân tại A)

chúc bạn học tốt

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

7 tháng 1 2022

Answer:

Mình chỉ biết làm a, b còn c, d mình không biết. Bạn thông cảm ạ.

undefineda. Có: DM vuông góc với AC; DN vuông góc với BC; AC vuông góc với BC

=> CMDN là hình chữ nhật

b. Xét tam giác abc VUÔNG TẠI a:

D là trung điểm AB

=> CD là đường trung tuyến

=> CD = DB = AD

=> Tam giác CDB cân tại D

Mà DN vuông góc với BC

=> DN là đường cao và cũng là trung tuyến

=> CN = NB

Xét tứ giác DCEB:

CN = NB

DN = NE

Mà DE vuông góc BC

=> Tứ giác DCEB là hình thoi.

DD
8 tháng 1 2022

c) Xét tam giác \(ABC\)vuông tại \(C\)có: 

\(AB^2=AC^2+BC^2\)(định lí Pythagore) 

\(\Leftrightarrow AC^2=AB^2-BC^2=10^2-6^2=64=8^2\)

suy ra \(AC=8\left(cm\right)\).

 \(DM\)vuông góc với \(AC\)mà \(AB\perp AC\)suy  ra \(DM//AB\)

mà ta lại có \(D\)là trung điểm của \(AB\)

nên \(DM\)là đường trung bình của tam giác \(ABC\).

Suy ra \(DM=\frac{1}{2}BC=\frac{1}{2}.6=3\left(cm\right)\)

Tương tự ta cũng suy ra \(DN=\frac{1}{2}AC=4\left(cm\right)\).

\(S_{CMDN}=DM.DN=3.4=12\left(cm^2\right)\).

d) 

Có \(CDBE\)là hình thoi nên để \(CDBE\)là hình vuông thì \(CD\perp BE\).

Xét tam giác \(ABC\)có \(D\)là trung điểm \(AB\)mà \(CD\perp BE\)nên tam giác \(ABC\)cân tại \(C\).

Vậy tam giác \(ABC\)vuông cân tại \(C\).