K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

a: BC=BH+CH

=3,6+6,4=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=3,6\cdot6,4=23,04\)

=>\(AH=\sqrt{23,04}=4,8\left(cm\right)\)

ΔAHC vuông tại H

=>\(AC^2=AH^2+HC^2\)

=>\(AC^2=4,8^2+6,4^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}\simeq90^0-53^0=37^0\)

b: Sửa đề; \(AM\cdot MB+AN\cdot NC=MN^2\)

Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

Xét ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot MB=HM^2\)

Xét ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot NC=HN^2\)

\(AM\cdot MB+AN\cdot NC=HM^2+HN^2=MN^2\)

c: AK\(\perp\)MN

=>\(\widehat{ANM}+\widehat{KAC}=90^0\)

mà \(\widehat{ANM}=\widehat{AHM}\)(AMHN là hình chữ nhật)

nên \(\widehat{AHM}+\widehat{KAC}=90^0\)

mà \(\widehat{AHM}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{B}+\widehat{KAC}=90^0\)

mà \(\widehat{B}+\widehat{KCA}=90^0\)

nên \(\widehat{KAC}=\widehat{KCA}\)

=>KA=KC

\(\widehat{KAC}+\widehat{KAB}=90^0\)

\(\widehat{KCA}+\widehat{KBA}=90^0\)

mà \(\widehat{KAC}=\widehat{KCA}\)

nên \(\widehat{KAB}=\widehat{KBA}\)

=>KA=KB

mà KA=KC

nên KB=KC

=>K là trung điểm của BC

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(\left\{{}\begin{matrix}AM\cdot AB=AH^2\left(1\right)\\AM\cdot MB=MH^2\end{matrix}\right.\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(\left\{{}\begin{matrix}AN\cdot AC=AH^2\left(2\right)\\NA\cdot NC=NH^2\end{matrix}\right.\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Xét ΔHNM vuông tại H có 

\(NM^2=HN^2+HM^2\)

hay \(HB\cdot HC=AM\cdot MB+AN\cdot NC\)

3 tháng 8 2022

Help me

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d