K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2021

A B C 6 D H 8

Vì \(AC\perp AB;HD\perp AB\Rightarrow AC//HD\)

Áp dụng hệ quả Ta lét ta có : \(\frac{BD}{BC}=\frac{HD}{AC}\)(*) 

Vì AD là đường phân giác ^A nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Lại có : \(BC^2=AB^2+AC^2=36+64=100\Rightarrow BC=10\)cm 

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{10}{14}=\frac{5}{7}\)

\(\Rightarrow DC=\frac{5}{7}AC=\frac{5}{7}.8=\frac{40}{7}\)cm ; \(BD=\frac{5}{7}AB=\frac{5}{7}.6=\frac{30}{7}\)cm 

Thay vào (*) ta được : \(\frac{\frac{30}{7}}{10}=\frac{HD}{8}\Rightarrow10HD=\frac{240}{7}\Rightarrow HD=\frac{24}{7}\)cm 

Có :  \(\frac{BH}{AB}=\frac{HD}{AC}\)( hệ quả Ta lét ) \(\Rightarrow BH=\frac{AB.HD}{AC}=\frac{6.\frac{24}{7}}{8}=\frac{18}{7}\)cm 

\(\Rightarrow AH=AB-BH=6-\frac{18}{7}=\frac{24}{7}\)cm 

Áp dụng định lí Pytago tam giác AHD vuông tại H ta có : 

\(AD^2=AH^2+HD^2=\left(\frac{24}{7}\right)^2+\left(\frac{24}{7}\right)^2=2\left(\frac{24}{7}\right)^2\)

\(\Rightarrow AD=\frac{24\sqrt{2}}{7}\)cm o.O bạn check lại xem nhé 

22 tháng 7 2018

a, \(\Delta ABC,\hat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

\(\Leftrightarrow10^2=6^2+AC^2\)

\(\Leftrightarrow AC^2=64\)

\(\Leftrightarrow AC=8\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:

\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)

Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)

Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)

22 tháng 7 2018

2 câu kia mình nghĩ sau

15 tháng 7 2016

tam giác ABC vuông tại A=> BC^2=AB^2+AC^2=> BC=\(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)

tam giác ABC có AD là phân giác => DB/DC=AB/AC=> DB/AB=DC/AC=DC+DB/AC+AB=10/6+8=5/7

=> DB=5/7.AB=5/7.6=30/7cm,DC=5/7.8=40/7cm

12 tháng 3 2020

Ta sẽ chứng minh:\(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a+b+c\right)^2\)

Theo nguyên lí Dirichlet, luôn tồn tại ít nhất 2 trong 3 số \(a^2-1,b^2-1,c^2-1\) cùng dấu.

Giả sử đó là \(b^2-1,c^2-1\Rightarrow\left(b^2-1\right)\left(c^2-1\right)\ge0\)

\(\because\) \(\left(a^2+1+1\right)\ge\frac{\left(a+b+c\right)^2}{b^2+c^2+1}\) (Bunyakovski)\(\therefore VT\ge\frac{\left(b^2+2\right)\left(c^2+2\right)\left(a+b+c\right)^2}{b^2+c^2+1}\ge3\left(a+b+c\right)^2\)\(\Leftrightarrow\left(b^2+2\right)\left(c^2+2\right)\ge3\left(b^2+c^2+1\right)\)

\(\Leftrightarrow\left(b^2-1\right)\left(c^2-1\right)\ge0\) (đúng do giả sử)

Từ đó dẫn đến kết luận.

Cách khác: Xét hiệu 2 vế, thu được:

X2LRvEx.png

Đúng vì: \(2b^2c^2+b^2-6bc+c^2+2=2\left(bc-1\right)^2+\left(b-c\right)^2\ge0\)

12 tháng 3 2020

A B C D H

Kiên trì lắm mới làm đây,đang làm tự nhiên máy load lại :(

Áp dụng định lý đường phân giác\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)

Áp dụng định lý Pythagoras:\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Đặt \(BD=3k;DC=4k\)

Ta có:\(BD+DC=BC\Rightarrow3k+4k=10\Rightarrow k=\frac{10}{7}\)

\(\Rightarrow BD=\frac{30}{7}\left(cm\right);DC=\frac{40}{7}\left(cm\right)\)

b

Áp dụng định lý Thales:\(\frac{DH}{AC}=\frac{BH}{HA}=\frac{BD}{DC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\Rightarrow DH=\frac{3}{4}\cdot8=6\left(cm\right)\)

Đặt \(BH=3q;AH=4q\)

Ta có:\(BH+AH=AC\Rightarrow3q+4q=8\Rightarrow q=\frac{8}{7}\)

\(\Rightarrow AH=\frac{32}{7}\left(cm\right)\)

Áp dụng định lý Pythagoras:\(AH^2+HD^2=AD^2\Rightarrow AD=\sqrt{AH^2+HD^2}=\frac{2\sqrt{697}}{7}\)

Cách 2:

Có một đẳng thức trong tam giác rất đẹp như sau:\(AD^2=AB\cdot AC-BD\cdot DC\)

\(\Rightarrow AD=\sqrt{AB\cdot AC-BD\cdot DC}=\frac{24\sqrt{2}}{7}\)

Tuy nhiên 2 kết quả trên lại khác nhau,mọi người tìm chỗ sai giúp mik được ko ạ ?

15 tháng 8 2021

mọi người giúp e với ạ e đg cần gấp

15 tháng 8 2021

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm

 

 

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.Bài 3:...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7 2024

Gì nhiều vậy???

 

30 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

b: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

c:

Sửa đề: AP là phân giác của góc BAC

Xét tứ giác AEPF có

\(\widehat{AEP}=\widehat{AFP}=\widehat{FAE}=90^0\)

=>AEPF là hình chữ nhật

Hình chữ nhật AEPF có AP là phân giác của góc FAE

nên AEPF là hình vuông