K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

bn tự vẽ nhé

tam giác ACE và tam giác AKE  có :

AE chung

góc C= góc K ( =90 độ)

A1=A2( gt)(A1 là CAE, A2 là KEA do tia phân giác )

=> tam giác ACE=tam giác AKE ( g.c.g)

=> AC=AK ( 2 cạnh tương ứng )

vì AC=AK => tam giác ACK cân tại a

trong 1 tam giác cân dq phân giác đồng thời là đường cao=> AE vuông góc với AK

b. vì AE là phân giác góc BAC 

=> A1=A2=góc BAC:2=600 : 2= 300 (1)

Xét tam giác ABC có : 

BAC+ABC+ACB=1800

600+900+ABC=1800

=> ABC=1800-900-600=30(2)

Từ (1) và (2) => A1=ABC

xét tam giác ACE và tam giác BKE có :

ACE=BKE (=900)

A1=ABC( CMT)

EC=EK ( theo a)

=> tam giác ACE= tam giác BKE ( g.c.g)

=> AC=KB ( 2 cạnh tương ứng)

mà AC=AK ( theo a)

=> KB=KA (đpcm)

c. vì A2=ABC ( theo b cùng =300)

=> tam giác EAB cân tại E => AE=EB (1)

xét tam giác vuông ACE

vì AE  là cạnh huyền => AE>AC(2)

từ (1) và (2 ) => EB>AC (đpcm)

d. gọi O là giao điểm của AC và BD

xét tam giác AOB có 3 đg cao lần lượt là  AD,OK,BC

=> AD , OK ,BC giao nhau tại O => O,K,E thẳng hàng

=> AC,BD,KE đồng quy tại O ( đpcm )<là cùng qua 1 điểm>

nhớ k nhé

17 tháng 7 2019

C A K B E D

Cm: a) Xét t/giác ACE và t/giác AKE

có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)

   AE : chung

 \(\widehat{CAE}=\widehat{KAE}\) (gt)

=> t/giác ACE = t/giác AKE (ch - gn)

=> AC = AK ; EC = EK (các cặp cạnh t/ứng)

Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK

   +) EC = EK (cmt) => E thuộc đường trung trực của CK

Mà A \(\ne\)E => AE là đường trung trực của CK

=> AE \(\perp\)CK

b) Xét t/giác ABC có góc C = 900

=> \(\widehat{A}+\widehat{ABC}=90^0\)

=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)

Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)

=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E

=> AE = EB

=> AK = KB (quan hệ giữa đường xiên và hình chiếu)

(có thể xét qua 2 t/giác AEK và t/giác BEK)

c) Xét t/giác EKB có góc EKB = 90 độ

=> EB > KB (ch > cgv)

Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)

=> EB > AC 

d) Ta có: AC \(\perp\)BC \(\equiv\)C

     KE\(\perp\)AB \(\equiv\)K

      BD \(\perp\)AD \(\equiv\)D

=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)

17 tháng 7 2019

A B C E K D 1 2 1

a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)

\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).

b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.

c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).

d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác). 

16 tháng 8 2015

a) cm tam giac ACE= tam giac AEK ( ch-gn)--> AC=AK

ta co : AC= AK 

          CE=EK ( tam giac ACE= tam giac AEK)

--> A,E nam tren duong trung truc cua CK

--> AE la duong trung truc CK->AE vuong goc CK

b)xet tam giac ABC vuong tai C ta co : goc A+ goc B =90 ( 2 goc phu nhau )

-->60+goc B=90--> goc B =30

ma goc EAB=1/2 A ( AE la tia p/g goc A)--> goc EAB=1/2.60=30

vay goc EAB = goc B

tuong tu : cm goc AEK = 90- EAK =90-30=60

          goc EBK=90- goc KEB =60

--> goc AEK= goc EBK

--> cm tam giac AEK = tam giac EBK ( g=c=g)

--> KA=KB

c) tu diem A den duoing thang CB ta co

AE la duong xien , AC la duong vuong goc===> AC< AE ( quan he duong xien duong vuong goc)

mã EB=EA ( tam giac AEK= tam giac EKB)

nen AC<BE

            d_ xet tam giac AEB ta co

EK la duong cao, ( EK vuong foc AB)

BD la duong cao ( BD vuong foc AE

AC la duong cao ( AC vuong goc BC )

==> EK,BD,AC dong quy tai 1 diem

19 tháng 3 2018

a) cm tam giac ACE= tam giac AEK ( ch-gn)--> AC=AK
ta co : AC= AK 
          CE=EK ( tam giac ACE= tam giac AEK)
--> A,E nam tren duong trung truc cua CK
--> AE la duong trung truc CK->AE vuong goc CK
b)xet tam giac ABC vuong tai C ta co : goc A+ goc B =90 ( 2 goc phu nhau )
-->60+goc B=90--> goc B =30
ma goc EAB=1/2 A ( AE la tia p/g goc A)--> goc EAB=1/2.60=30
vay goc EAB = goc B
tuong tu : cm goc AEK = 90- EAK =90-30=60
          goc EBK=90- goc KEB =60
--> goc AEK= goc EBK
--> cm tam giac AEK = tam giac EBK ( g=c=g)
--> KA=KB


c) tu diem A den duoing thang CB ta co
AE la duong xien , AC la duong vuong goc===> AC< AE ( quan he duong xien duong vuong goc)
mã EB=EA ( tam giac AEK= tam giac EKB)
nen AC<BE
            d_ xet tam giac AEB ta co
EK la duong cao, ( EK vuong foc AB)
BD la duong cao ( BD vuong foc AE
AC la duong cao ( AC vuong goc BC )
==> EK,BD,AC dong quy tai 1 die

:3

29 tháng 4 2019

1
B A C K D H

a)Xét \(\Delta\)ABD:AB=BD=>\(\Delta\)ABD cân tại B=>BAD=BDA

b)Xét \(\Delta\)AHD:HAD+HDA=90(do AHD=90) (1)

Lại có:BAH+HAD+DAC=90(do bằng góc BAC) (2)

Mặt khác:BAD=BDA (chứng minh trên) (3)

Từ (1), (2) và (3) suy ra :HAD=DAC=>AD là tia phân giác góc HAC

c)Xét \(\Delta\)ADH và \(\Delta\)ADK:

                AHD=AKD=90

                AD chung

                HAD=DAK(AD là tia phân giác góc HAC)

=>\(\Delta\)ADH=\(\Delta\)ADK(cạnh huyền-góc nhọn)

d)Xét \(\Delta\)ABH:AB<BH+AH

   Xét \(\Delta\)ACH:AC<AH+CH

Suy ra:AB+AC<BC+2AH

                

29 tháng 4 2019

2.
B A C K D E G

a)Xét \(\Delta\)AKE và \(\Delta\)ACE:

                 AKE=ACE=90

                 AE:chung

                 EAK=EAC

=>\(\Delta\)AKE=\(\Delta\)ACE(cạnh huyền-góc nhọn)=>AC=AK=>\(\Delta\)AKC cân tại A=>AE là đường phân giác đồng thời là đường vuông góc=>AC=AK và AE\(\perp\)CK

b)Xét \(\Delta\)ABC:C=90;A=60=>B=30

   AE là đường phân giác góc BAC=>KAE=1/2.BAC=30

Suy ra:\(\Delta\)BAE cân tại E=>EK là đường vuông góc đồng thời là đường trung tuyến=>KA=KB

c)\(\Delta\)BAE cân tại E=>EB=EA

   Xét ACE:C=90=>EA>AC

Mà:EB=EA(chứng minh trên)

Suy ra:EB>AC

d)Xét \(\Delta\)ADB và\(\Delta\)BCA:

               ADB=BCA=90

              AB:chung

              BAD=ABC(cùng bằng 30)

=>\(\Delta\)ADB=\(\Delta\)BCA(cạnh huyền-góc nhọn)=>AD=BC

Gọi G là giao điểm của BD và AC,ta cần chứng minh G;E;K thẳng hàng

Xét \(\Delta\)ABG có 2 đường cao AD và BC cắt nhau tại E 

Nên E là trực tâm hay GE\(\perp\)AB

Mà EK\(\perp\)AB

Nên: GE trùng EK hay G;E;K thẳng hàng 

Suy ra AC,BD,EK đồng quy tại G

1 tháng 5 2016

khó ha

Cho tam giác ABC vuông ở C có góc A bằng 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB ( K thuộc AB ). Kẻ BD vuông góc với tia AE ( D thuộc AE). Chứng minh :

  1. AC=AK và AE vuoogn góc với CK
  2. KA=KB
  3. EB>AC
  4. Ba đường thẳng AC,BD,KE cùng đi qua 1 điểm

 M.n giúp mình nha :))) Cảm ơn nhiều ^^