K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2024

a) Tam giác ABC vuông tại A, AH là đường cao nên ta có:

∠BAH = ∠BAC và ∠ABH = ∠ABC (do cùng vuông góc với đường thẳng đứng)
Vậy tam giác HBA đồng dạng tam giác ABC theo qui tắc góc - góc.

Do đồng dạng nên ta có:

\(\dfrac{AB}{BH}=\dfrac{BH}{BC}\)

Từ đó suy ra:

AB2 = BH \(\cdot\) BC

b) M, N lần lượt là trung điểm của AB và AC nên AM = MB = \(\dfrac{1}{2}AB\) và AN = CN = \(\dfrac{1}{2}AC\).

Do tam giác ABC vuông cân tại A nên AB = AC, suy ra MB = NC. Vậy BMNC là hình thang cân.

Do MN là trung tuyến của tam giác ABC nên MN = \(\dfrac{1}{2}BC\) = AH (vì ABC là tam giác vuông cân).

c) K là giao điểm của AH và CM. Do MN // BC và MN = AH nên ta có tứ giác AMKN là hình bình hành. Suy ra AK = MN = AH.

Vì vậy, BC = BM + MC = BA + AC = 2AB = 3AK.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

4 tháng 4 2023

mình viết nhầm câu a là tam giác ABC đồng dạng với tam giác HBA ạ chứ không phải HCA

5 tháng 5 2019

***Hình bạn tự vẽ nha***

a, Xét tam giác ABC và tam giác BHA có : 

Góc ABC chung 

Góc BAC = góc BHA ( =90°)

==> Tam giác ABC đồng dạng tam giác HBA ( g.g ) 

==> AB/HB = BC/AB ==> AB^2 = HB. BC 

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔAEB và ΔIEC có

góc BAE=góc EIC

góc AEB=góc IEC

=>góc ABE=góc ICE=góc IBC

=>ΔIEC đồng dạng với ΔICB

=>IE/IC=IC/IB

=>IC^2=IE*IB

c: Xét ΔBNC có 

BI vừa là phân giác, vừa là đường cao

=>ΔBNC cân tại B

=>I là trung điểm của NC

ΔNAC vuông tại A

mà I là trung điểm của NC

nên IA=IN=IC

=>IN^2=IE*IB

và IA=IM

nên IM^2=IE*IB

=>IM/IE=IB/IM

=>ΔIMB đồng dạng với ΔIEM

=>góc IMB=90 độ

=>ĐPCM