Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ ( sợ lệch thui ko vẽ nữa, ném đá thì cay :))
Xét tam giác BME và tam giác CMF ta có :
^BEM = ^CFM = 90^0
BM = CM ( M là trung điểm BC )
^BME = ^CMF ( đđ )
=)) tam giác BME = tam giác CMF ( ch-gn )
=)) ME = MF ( 2 cạnh tương ứng )
\(\Delta BEM=\Delta CFM\text{(cạnh huyền - góc nhọn) }\Rightarrow BE=CF\)
Kí hiệu tam giác là t/g nhé
a) Có: BE _|_ Ax (gt)
CF _|_ Ax (gt)
Suy ra BE // CF (1)
Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:
BM = CM (gt)
EMB = FMC ( đối đỉnh)
Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)
=> BE = CF (2 cạnh tương ứng) (2)
ME = MF (2 cạnh tương ứng) (3)
(1); (2) và (3) là đpcm
b) Xét t/g EMC và t/g FMB có:
EM = MF (câu a)
EMC = FMB ( đối đỉnh)
CM = BM (gt)
Do đó, t/g EMC = t/g FMB (c.g.c)
=> CE = BF (2 cạnh tương ứng) (4)
ECM = FBM (2 góc tương ứng)
Mà ECM và FBM là 2 góc so le trong
Nên EC // BF (5)
(4) và (5) là đpcm
Xét tam giác CFM và tam giác BEM có:
CFM = BEM = 900 (gt) vậy hai tam giác là 2 tam giác vuông
MB = MC (gt)
góc M1 = góc M2 (đổi đỉnh)
Vậy tam giác CFM = tam giác BEM (cạnh huyền - góc nhọn)
suy ra BE = CF ( hai cạnh tương ứng của 2 tam giác bằng nhau)
Nếu bạn chưa học trường hợp bằng nhau của tam giác thì có thể suy ra góc EBM = góc FCM vì phụ với góc M2 và góc M1 mà góc M1 = M2 vì đối đỉnh. suy ra 2 tam giác bằng nhau theo trường hợp góc - cạnh - góc nhé
a: Xét ΔBME vuông tại E và ΔCMF vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)
Do đó: ΔBME=ΔCMF
Suy ra: BE=CF
Giải thích các bước giải:
BE ⊥ AM, CF⊥AM
=> BE // CF
a) Xét Δ vuông BME và Δ vuông CMF có:
BM = MC ( M là tđ BC )
B1 = C1 ( so le trong )
=> Δ ... = Δ ... ( ch - gn)
b) ME = MF ( cạnh tương ứng )
c) Xét Δ MEC và Δ MFB có:
M1 = M2 (đối đỉnh)
ME = MF (cmt)
BM = CM (cmt)
=> Δ ... = Δ ... ( cgc )
=> CE = BF
d)
Ta có: C2 = B2 (Δ MEC = Δ MFB)
Mà 2 góc này ở vị trí so le trong
=> CE // BF
Xét \(\Delta\) vuông BEM và \(\Delta\)vuông CFM ta có :
BM = CM
EMB = CMF ( đối đỉnh )
=> \(\Delta\)BEM = \(\Delta\)CFM ( cạnh huyền - góc nhọn )
=> BE = CF
a, C/m ΔBME = ΔCMF
Xét ΔvBME và ΔvCMF. Ta có:
BM = CM (vì M là trung điểm của BC)
∠M1 = ∠M2 (đối đỉnh)
⇒ ΔvBME = ΔvCMF
b, C/m BE = CF
Ta có: ΔBME = ΔCMF (cmt)
⇒ BE = CF (hai cạnh tương ứng)
# chúc bẹn học tốt !!