K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

6 tháng 12 2017

\(\Delta CIM=\Delta AIN\left(c.g.c\right)\Rightarrow AN=MC\).
\(\Delta CIN=\Delta AIM\left(c.g.c\right)\)\(\Rightarrow NC=MA\).
Tam giác ABC vuông tại A có AM là đường trung tuyến nên CM = AM = MB.
Vì vậy NC = NA = AM = MC hay tứ giác NCMA là hình thoi, suy ra CA vuông góc với MN
Có IN = IM và MN vuông góc với CA nên M đối xứng với N qua AC.

5 tháng 12 2017

2016-12-16_145800

26 tháng 11 2022

Bài 2:

vecto AM=vecto AB+vecto BM

=vecto AB+2/3vecto BC

=vecto AB+2/3*(vecto BA+vecto AC)

=1/3*vecto AB+2/3*vecto AC

NV
5 tháng 11 2021

Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

Cộng vế:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b. Từ câu a ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)