Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình UwU
ABCD là hbh ( gt ) => AD//BC ; AC//BD ( t/c hình bình hành )
Xét tam giác DMC có AN//CD ( cmt )
\(\Rightarrow\frac{AM}{MC}=\frac{MN}{DM}\)( theo định lý ta lét ) (1)
Xét tam giác CMK có AD//CK ( cmt )
\(\Rightarrow\frac{DM}{MK}=\frac{AM}{MC}\)( theo định lý ta lét ) (2)
Từ (1) và (2) \(\Rightarrow\frac{DM}{MK}=\frac{MN}{DM}\Leftrightarrow DM^2=MN.MK\left(đpcm\right)\)
A B C x E D F I O
ED là đường trung bình của tam giác ABC nên ED = 1/2 BC
Vì ED là đường trung bình nên D là trung điểm của AC.
Tam giác DAE = tam giác DCF (Trường hợp GCG) => DE = DF.
BCFE là hình bình hành vì có 2 cặp cạnh đối song song.
=> BF cắt EC tại trung điểm O của mỗi đoạn.
Trong tam giác CEF có: CD và FO là trung tuyến => I là trọng tâm tam giác CEF.
=> CI = 2/3 CD
=> \(IC^2=\frac{4}{9}CD^2\) (1)
Ta có: \(IA.ID=\left(AD+ID\right).ID=\left(CD+\frac{1}{3}CD\right).\frac{1}{3}CD=\frac{4}{9}CD^2\) (2)
Từ (1) và (2) suy ra \(IC^2=ID.IA\)
b) Do I là trọng tâm tam giác CEF nên ID/IC = 1/2