K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

Ta có: ΔABC = △DEF
=> ∠E = ∠B = 550 (2 góc tương ứng)
Suy ra ∠A + ∠B = 1300
=> ∠A = 1300 - 550 = 750
Trong △ABC, t/có:
∠A + ∠B + ∠C = 1800
=> ∠C = 1800 - 550 - 750 = 500
Vì △ABC = △DEF
=> ∠A = ∠D = 750; ∠C = ∠F = 500 (2 góc tương ứng)
Vậy ∠A= 750; ∠B= 550; ∠C= 500; ∠D= 750; ∠E= 550; ∠F= 500

17 tháng 11 2017

\(\Delta ABC=\Delta DEF\left(gt\right)\)

\(\Rightarrow\widehat{A}=\widehat{D}\text{ ( hai góc tương ứng ) }\)

\(\Rightarrow\widehat{B}=\widehat{E}=55^o\text{ ( hai góc tương ứng ) }\)

\(\Rightarrow\widehat{C}=\widehat{F}\text{ ( hai góc tương ứng ) }\)

Mặt khác \(\widehat{A}+\widehat{B}=130^o\left(gt\right)\)

\(\Rightarrow\widehat{A}=130^o-\widehat{B}=130^o-55^o=75^o\)

Mặt khác \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\text{ ( tổng 3 góc tam giác ) }\)

\(\Rightarrow\widehat{C}=180^o-\left(\widehat{B}+\widehat{A}\right)=180^o-\left(55^o+75^o\right)=50^o\)

\(\Rightarrow\widehat{A}=\widehat{D}=75^o\)

\(\Rightarrow\widehat{B}=\widehat{E}=55^o\)

\(\Rightarrow\widehat{C}=\widehat{F}=50^o\)

30 tháng 4 2017

C A B D K I

a)A +B + C =180độ

=>90 độ + 60 độ + C =180 độ

=> C =30 độ

Mà 30 độ < 60 độ <90 độ

=>C < B < A

=> AB < AC < BC

b)Xét tam giác vuông ABD(vuông ở A) và tam giác vuong KDB(vuông ở K)

        Cạnh BK chung

        ABD = DBK ( vì BK là phân giác góc B)

=> Tam giác ABD = Tam giác KDB(cạnh huyền - góc nhọn)

c) Vì BK là phân giác góc B => KBD = 1/2 B = 1/2 60 độ =30 độ

Mà C =30 độ

=>KBD = C = 30 độ

=> Tam giác BDC cân ở D

Vì tam giác ABD = Tam giác KDB nên BA=BK(2 cạnh tương ứng)  (1)

Mà góc C=30 độ,A =90 độ

Áp dụng tính chất góc đối diện với cạnh 30 độ =1/2 cạnh huyền   => AB =1/2 BC   (2)

Từ (1) và (2) => BA=BK=1/2 BC

d)BA = BK = 1/2 BC => BC= 3 x 2=6

Xét tam giác ADI và tam giác KDC :

   ADI = KDC(2 góc đối đình)

   AD=DK( 2 cạnh tương ứng của tam giác ABD và tam giác KBD)

   DAI=DKC ( 2 góc kề bù với 2 góc 90 độ)

         => Tam giác ADI = Tam giác KDC( góc - cạnh - góc)

         =>AI = KC(2 cạnh tương ứng)

          Mà KC=1/2 BC =>AI=CK=3 cm

Những chỗ có gạch trên đầu là kí hiệu của góc nhé(vì ở đây ko thấy kí hiệu mũ nên phải viết gạch ngang)

Nếu có chỗ nào không hiểu bạn cứ viết đi,mình giải thích cho 

29 tháng 4 2017

bạn ơi AH ở đâu?

27 tháng 5 2017

A B C H 6cm 5cm 1 2

a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH, ta có:

AH là cạnh chung

AB=AC (gt)

Do đó: \(\Delta\)ABH=\(\Delta\)ACH (c.h-c.g.v)

\(\Rightarrow\) BH=HC (2 cạnh tương ứng)

Vậy BH=HC=BC:2=3cm

b) Áp dụng định lý PI-TA-GO vào \(\Delta\)vuông ABH, ta có:

\(AH^2+BH^2=AB^2\)

\(AH^2+3^2=5^2\)

\(AH^2=16\)

\(AH=4cm\)

c) Ta có: \(\widehat{A}_1=\widehat{A_2}\) (\(\Delta ABH=\Delta ACH\))

\(\Rightarrow\) AH là đường phân giác. (*)

Ta lại có: BH=CH (c/m trên)

\(\Rightarrow\) AH là đường trung tuyến. (**)

Từ (*) và (**), ta có:

AH thoả mãn 2 trong 4 loại đường.

\(\Rightarrow\) AH vừa là đường trung trực, trung tuyến, đường cao, phân giác

6 tháng 2 2017

-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)

-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )

- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)

6 tháng 2 2017

2. Xét tam giác ABH và tam giác ACK có :

AB = AC (tam giác ABC cân tại A)

Góc A chung

góc AKC = góc AHB ( = 90 độ )

=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)

=>AH = AK ( cặp cạnh t/ứng )

12 tháng 6 2017

Bài 2:

A B C D E H 1 2

a) Xét hai tam giác ABD và EBD có:

AB = EB (gt)

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

BD: cạnh chung

Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)

\(\widehat{BAD}=90^o\)

Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.

b) Vì AB = EB (gt)

\(\Rightarrow\) \(\Delta ABE\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực

Do đó: BD là đường trung trực của AE. (1)

c) Xét hai tam giác vuông ADH và EDC có:

DA = DE (\(\Delta ABD=\Delta EBD\))

\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)

Suy ra: AH = EC (hai cạnh tương ứng)

Ta có: BH = AB + AH

BC = EB + EC

Mà AB = EB (gt)

AH = EC (cmt)

\(\Rightarrow\) BH = BC

\(\Rightarrow\) \(\Delta BHC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay

BD \(\perp\) HC (2)

Từ (1) và (2) suy ra: AE // HC (đpcm).

14 tháng 6 2017

bạn ơi . sao lại cạnh góc vuông - góc nhọn vậy