Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
A B C H M N
a) \(\Delta ABH=\Delta ACH\) (theo trường hợp c.g.c)
b) Từ (a) , ta có \(\widehat{BAH}=\widehat{CAH}\)
Xét \(\Delta AMH\) và \(\Delta ANH\) có :
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
\(\Rightarrow\Delta AMH=\Delta ANH\)(ch-gn)
=> MH = HN
c) Từ b , ta cũng có :
AM = AN
d) Vì \(\widehat{BAH}=\widehat{CAH}\)
=> AH là phân giác của \(\widehat{BAC}\)
Mặt khác , tam giác ABC cân tại A
=> AH cũng là đường trung trực
A B C H M N
a, Xét tam giác AHB và tam giác AHC ta có:
AB=AC(gt);BH=CH(gt);AH: cạnh chung
Do đó tam giác ABH=tam giác ACH(c.c.c) (đpcm)
b, Xét tam giác ABC cân tại A ta có:
\(\widehat{ABC}=\widehat{ACB}\) (theo tính chất của tam giác cân)
Xét tam giác HMB vuông tại M và tam giác HNC vuông tại N ta có:
BH=CH(gt); \(\widehat{MBH}=\widehat{NCH}\) (cmt)
Do đó tam giác HMB=tam giác HNC(cạnh huyền - góc nhọn)
=> HM=HN(cặp cạnh tương ứng)(đpcm)
c, Xét tam giác AMH vuông tại M và tam giác ANH vuông tại N ta có:
AH: cạnh huyền chung; HM=HN(cm câu b)
Do đó tam giác AMH=tam giác ANH(cạnh huyền cạnh góc vuông)
=> AM=AN(cặp cạnh tương ứng) (đpcm)
d, Do tam giác ABH=tam giác ACH (cm câu a)
nên \(\widehat{AHB}=\widehat{AHC}\) (cặp góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^o\)
=> \(\widehat{AHB}=\widehat{AHC}=90^o\)
Mặt khác theo bài ra: HB=HC(gt) nên AH là đường trung trực của tam giác ABC (đpcm)
Chúc bạn học tốt!!!
Bài 2:
A B C D E H 1 2
a) Xét hai tam giác ABD và EBD có:
AB = EB (gt)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh chung
Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)
Mà \(\widehat{BAD}=90^o\)
Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.
b) Vì AB = EB (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực
Do đó: BD là đường trung trực của AE. (1)
c) Xét hai tam giác vuông ADH và EDC có:
DA = DE (\(\Delta ABD=\Delta EBD\))
\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)
Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)
Suy ra: AH = EC (hai cạnh tương ứng)
Ta có: BH = AB + AH
BC = EB + EC
Mà AB = EB (gt)
AH = EC (cmt)
\(\Rightarrow\) BH = BC
\(\Rightarrow\) \(\Delta BHC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay
BD \(\perp\) HC (2)
Từ (1) và (2) suy ra: AE // HC (đpcm).
a)
Xét \(\Delta BHE\) và \(\Delta CHF\) có:
\(\widehat{B}=\widehat{C}\left(gt\right)\)
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(HB=HC\)( trong tam giác cân, đường cao cũng là đường trung tuyến)
\(\Rightarrow\Delta BHE=\Delta CHF\left(g.c.g\right)\)
\(\RightarrowĐpcm\)
a) Tự vẽ
b) Vì CI là phân giác ACB
=> ACI = BCI = \(\frac{60°}{2}\)= 30°
Vì IE // BC (gt)
=> ICB = EIC = 30° ( so le trong)
d) Vì DE//BC (gt)
=> AED = ACB = 60° ( đồng vị)
Xét ∆AIE ta có :
AIE + AEI + IAE = 180°
=> IAK = 180° - 90° - 60° = 30°
Ta có :
AEI = KEC = 60° ( đối đỉnh)
Xét ∆EKC ta có :
EKC + KCE + KEC = 180°
=> KCE = 180° - 90° - 60° = 30°
=> EAI = KCE = 30°
Mà 2 góc này ở vị trí so le trong
=> AH//KC
e) Xét ∆AHC ta có :
ACH + CAH + AHC = 180°
=> CAH = 180° - 90° - 60° = 30°
pham vu anh tuan oi ban co the ve hinh va viet gia thiet cho mik dc ko .lm on!!!
A B C H 6cm 5cm 1 2
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH, ta có:
AH là cạnh chung
AB=AC (gt)
Do đó: \(\Delta\)ABH=\(\Delta\)ACH (c.h-c.g.v)
\(\Rightarrow\) BH=HC (2 cạnh tương ứng)
Vậy BH=HC=BC:2=3cm
b) Áp dụng định lý PI-TA-GO vào \(\Delta\)vuông ABH, ta có:
\(AH^2+BH^2=AB^2\)
\(AH^2+3^2=5^2\)
\(AH^2=16\)
\(AH=4cm\)
c) Ta có: \(\widehat{A}_1=\widehat{A_2}\) (\(\Delta ABH=\Delta ACH\))
\(\Rightarrow\) AH là đường phân giác. (*)
Ta lại có: BH=CH (c/m trên)
\(\Rightarrow\) AH là đường trung tuyến. (**)
Từ (*) và (**), ta có:
AH thoả mãn 2 trong 4 loại đường.
\(\Rightarrow\) AH vừa là đường trung trực, trung tuyến, đường cao, phân giác