K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

A B C H 6cm 5cm 1 2

a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH, ta có:

AH là cạnh chung

AB=AC (gt)

Do đó: \(\Delta\)ABH=\(\Delta\)ACH (c.h-c.g.v)

\(\Rightarrow\) BH=HC (2 cạnh tương ứng)

Vậy BH=HC=BC:2=3cm

b) Áp dụng định lý PI-TA-GO vào \(\Delta\)vuông ABH, ta có:

\(AH^2+BH^2=AB^2\)

\(AH^2+3^2=5^2\)

\(AH^2=16\)

\(AH=4cm\)

c) Ta có: \(\widehat{A}_1=\widehat{A_2}\) (\(\Delta ABH=\Delta ACH\))

\(\Rightarrow\) AH là đường phân giác. (*)

Ta lại có: BH=CH (c/m trên)

\(\Rightarrow\) AH là đường trung tuyến. (**)

Từ (*) và (**), ta có:

AH thoả mãn 2 trong 4 loại đường.

\(\Rightarrow\) AH vừa là đường trung trực, trung tuyến, đường cao, phân giác

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

29 tháng 5 2017

A B C H M N

a) \(\Delta ABH=\Delta ACH\) (theo trường hợp c.g.c)

b) Từ (a) , ta có \(\widehat{BAH}=\widehat{CAH}\)

Xét \(\Delta AMH\)\(\Delta ANH\) có :

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

\(\Rightarrow\Delta AMH=\Delta ANH\)(ch-gn)

=> MH = HN

c) Từ b , ta cũng có :

AM = AN

d) Vì ​\(\widehat{BAH}=\widehat{CAH}\)

=> AH là phân giác của \(\widehat{BAC}\)

Mặt khác , tam giác ABC cân tại A

=> AH cũng là đường trung trực

29 tháng 5 2017

A B C H M N

a, Xét tam giác AHB và tam giác AHC ta có:

AB=AC(gt);BH=CH(gt);AH: cạnh chung

Do đó tam giác ABH=tam giác ACH(c.c.c) (đpcm)

b, Xét tam giác ABC cân tại A ta có:

\(\widehat{ABC}=\widehat{ACB}\) (theo tính chất của tam giác cân)

Xét tam giác HMB vuông tại M và tam giác HNC vuông tại N ta có:

BH=CH(gt); \(\widehat{MBH}=\widehat{NCH}\) (cmt)

Do đó tam giác HMB=tam giác HNC(cạnh huyền - góc nhọn)

=> HM=HN(cặp cạnh tương ứng)(đpcm)

c, Xét tam giác AMH vuông tại M và tam giác ANH vuông tại N ta có:

AH: cạnh huyền chung; HM=HN(cm câu b)

Do đó tam giác AMH=tam giác ANH(cạnh huyền cạnh góc vuông)

=> AM=AN(cặp cạnh tương ứng) (đpcm)

d, Do tam giác ABH=tam giác ACH (cm câu a)

nên \(\widehat{AHB}=\widehat{AHC}\) (cặp góc tương ứng)

\(\widehat{AHB}+\widehat{AHC}=180^o\)

=> \(\widehat{AHB}=\widehat{AHC}=90^o\)

Mặt khác theo bài ra: HB=HC(gt) nên AH là đường trung trực của tam giác ABC (đpcm)

Chúc bạn học tốt!!!

12 tháng 6 2017

Bài 2:

A B C D E H 1 2

a) Xét hai tam giác ABD và EBD có:

AB = EB (gt)

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

BD: cạnh chung

Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)

\(\widehat{BAD}=90^o\)

Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.

b) Vì AB = EB (gt)

\(\Rightarrow\) \(\Delta ABE\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực

Do đó: BD là đường trung trực của AE. (1)

c) Xét hai tam giác vuông ADH và EDC có:

DA = DE (\(\Delta ABD=\Delta EBD\))

\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)

Suy ra: AH = EC (hai cạnh tương ứng)

Ta có: BH = AB + AH

BC = EB + EC

Mà AB = EB (gt)

AH = EC (cmt)

\(\Rightarrow\) BH = BC

\(\Rightarrow\) \(\Delta BHC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay

BD \(\perp\) HC (2)

Từ (1) và (2) suy ra: AE // HC (đpcm).

14 tháng 6 2017

bạn ơi . sao lại cạnh góc vuông - góc nhọn vậy

10 tháng 4 2016

a,tam giác abh = tam giác ach (g.c.g)

=>bh=hc

=>góc ahb=góc ahc mà mà góc ahb + góc ahc=180độ 

=>góc ahb=góc ahc =90độ 

=>ah vuông góc với bc

b,bh=36:2=18.áp dụng định lí PY-TA-GO,ta có:

ab^2=ah^2+bh^2

=>ah^2=ab^2-bh^2

=>ah^2=30^2-18^2

=>ah=24

9 tháng 5 2017

a)

Xét \(\Delta BHE\) và \(\Delta CHF\) có:

\(\widehat{B}=\widehat{C}\left(gt\right)\)

\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)

\(HB=HC\)( trong tam giác cân, đường cao cũng là đường trung tuyến)

\(\Rightarrow\Delta BHE=\Delta CHF\left(g.c.g\right)\)

\(\RightarrowĐpcm\)

a) Tự vẽ 

b) Vì CI là phân giác ACB 

=> ACI = BCI = \(\frac{60°}{2}\)= 30° 

Vì IE // BC (gt)

=> ICB = EIC = 30° ( so le trong) 

d) Vì DE//BC (gt)

=> AED = ACB = 60° ( đồng vị) 

Xét ∆AIE ta có : 

AIE + AEI + IAE = 180° 

=> IAK = 180° - 90° - 60° = 30° 

Ta có : 

AEI = KEC = 60° ( đối đỉnh) 

Xét ∆EKC ta có : 

EKC + KCE + KEC = 180° 

=> KCE = 180° - 90° - 60° = 30° 

=> EAI = KCE = 30° 

Mà 2 góc này ở vị trí so le trong 

=> AH//KC

e) Xét ∆AHC ta có : 

ACH + CAH + AHC = 180° 

=> CAH = 180°  - 90° - 60° = 30° 

31 tháng 7 2019

pham vu anh tuan oi ban co the ve hinh va viet gia thiet cho mik dc ko .lm on!!!

24 tháng 4 2017

mik moi lop 5 hjhj

24 tháng 4 2017

minh cung the