Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O H E B' C'
Gọi BH; CE là đường cao
Xét tam giác ABH và ACE có: góc A chung; góc AHB = AEC = 90o
=> tam giác ABH đồng dạng với ACE (g - g)
=> \(\frac{AB}{AC}=\frac{AH}{AE}\Rightarrow AE.AB=AH.AC\) (1)
Xét tam giác AB'H và ACB' có góc B'AH chung; góc AB'C = AHB' = 90o
=> tam giác AB'H đồng dạng với ACB' (g - g)
=> \(\frac{AB'}{AC}=\frac{AH}{AB'}\Rightarrow AB'.AB'=AH.AC\) (2)
Xét tam giác AC'E và ABC' có: góc C'AE chung ; góc AEC' = AC'B = 90o
=> tam giác AC'E đồng dạng với ABC' (g - g)
=> \(\frac{AC'}{AB}=\frac{AE}{AC'}\Rightarrow AC'.AC'=AE.AB\) (3)
từ (1)(2)(3) => AB'. AB' = AC'. AC' => AB' = AC'
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE
Xet ΔAMC vuông tại M có MD là đường cao
nên AD*AC=AM^2
Xét ΔANB vuông tại N có NE là đường cao
nên AE*AB=AN^2
=>AN=AM
=>ΔAMN cân tại A
Tự vẽ hình được không ?
Mà sao lại AMC^ = AMC^ ? Bài này tớ cũng được cô giao và sửa như thế này nhá :>? AMC^ = ANB^ = 900
Kẻ BD \(\perp\)AC VÀ CE \(\perp\)AB
Tam giác DAB vuông tại D ; Tam giác EAC vuông tại E ( ^A chung )
=> \(\frac{DA}{EA}=\frac{AB}{AC}\Rightarrow AD.AC=AE.AB\left(1\right)\)
Tam giác MAC vuông tại M, MD \(\perp\)AC
=> AM2 = AD . AC ( hệ thức lượng ) (2)
Tam giác NAB vuông tại N, NE \(\perp\)AB
=> AN2 = AE . AB ( hệ thức lượng ) (3)
Từ (1) , (2) và (3) => đpcm
1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
2: Xet ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
3: ΔAMC vuông tại M có MD vuông góc AC
nên AD*AC=AM^2
ΔANB vuông tại N có NE vuông góc AB
nên AE*AB=AN^2
=>AM=AN