K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

a,Chứng minh được BFCH là hình bình hành

b, Sử dụng kết quả câu a), suy ra HF đi qua M

c, Chú ý: OM là đường trung bình của ∆AHF => ĐPCM

15 tháng 10 2023

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{DAB}\) chung

Do đó: ΔADB đồng dạng với ΔAEC

=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

=>\(AD\cdot AC=AB\cdot AE\)

b: Xét (O) có

ΔABF nội tiếp

AF là đường kính

Do đó: ΔABF vuông tại B

=>BF vuông góc AB

mà CH vuông góc AB

nên BF//CH

Xét (O) có

ΔACF nội tiếp

AF là đường kính

Do đó: ΔACF vuông tại C

=>AC vuông góc CF

mà AC vuông góc BH

nên BH//CF

Xét tứ giác BHCF có

BH//CF

BF//CH

Do đó: BHCF là hình bình hành

c: BHCF là hình bình hành

=>BC cắt HF tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HF

=>H,M,F thẳng hàng

30 tháng 7 2023

À thui biết làm r=))

Tham khảo:

d: Xét ΔAHF có FO/FA=FM/FH=1/2

nên OM//AH và OM/AH=FO/FA=1/2

Gọi giao cuảt AG với OH là G'

OM//AH

=>AG'/G'M=HG'/G'O=AH/OM=2

G là trọng tâm của ΔABC

=>AG/GM=2

=>AG'/G'M=AG/GM

=>G' trùng với G

=>HG=2GO

=>S AHG=2*S AGO