K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

2). Từ AD là phân giác  B A C ^  suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.

Từ 1). Δ B D M ∽ Δ B C F , ta có  D M C F = B D B C .

Vậy ta có biến đổi sau D A C F = 2 D M C F = 2 B D B C = C D C N = D E C E  (3).

 

Ta lại có góc nội tiếp  A D E ^ = F C E ^  (4).

Từ 3 và 4, suy ra Δ E A D ∽ Δ E F C ⇒ E F C ^ = E A D ^ = 90 ° ⇒ E F ⊥ A C  

24 tháng 4 2017

Giúp mình vớigianroi

6 tháng 12 2017

\(\Delta CIM=\Delta AIN\left(c.g.c\right)\Rightarrow AN=MC\).
\(\Delta CIN=\Delta AIM\left(c.g.c\right)\)\(\Rightarrow NC=MA\).
Tam giác ABC vuông tại A có AM là đường trung tuyến nên CM = AM = MB.
Vì vậy NC = NA = AM = MC hay tứ giác NCMA là hình thoi, suy ra CA vuông góc với MN
Có IN = IM và MN vuông góc với CA nên M đối xứng với N qua AC.

5 tháng 12 2017

2016-12-16_145800

9 tháng 9 2018

1). Ta có góc nội tiếp bằng nhau  B D M ^ = B C F ^   ( 1 ) và  B M A ^ = B F A ^    suy ra  180 0 − B M A ^ = 180 0 − B F A ^  hay  B M D ^ = B F C ^  (2).

Từ (1) và (2), suy ra  Δ B D M ~ Δ B C F   (g - g).

19 tháng 5 2021

\(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)

\(=\overrightarrow{OA}+\overrightarrow{AA'}+\overrightarrow{OB}+\overrightarrow{BB'}+\overrightarrow{OC}+\overrightarrow{CC'}\)

\(=\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\left(\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{AC}\right)\)

\(=\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\overrightarrow{CC}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\) (đpcm)

 

 

22 tháng 9 2020

Bẹn tự vẽ hình nhé

Vì A' đối xứng với B qua A => AA' =AB

=. \(\overrightarrow{A'A}=\overrightarrow{AB}\)

Vì B' đối xứng với C qua B => \(\overrightarrow{B'B}=\overrightarrow{BC}\)

Vì C' đối xứng với A qua C => \(\overrightarrow{C'C}=\overrightarrow{CA}\)

Ta có: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\left(\overrightarrow{OA'}+\overrightarrow{A'A}\right)+\left(\overrightarrow{OB'}+\overrightarrow{B'B}\right)+\left(\overrightarrow{OC'}+\overrightarrow{C'C}\right)\)

\(=\left(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\right)+\left(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}\right)\)

Lại có: \(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CA}=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{AC}-\overrightarrow{AC}=0\)

\(\Rightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}+0=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)

30 tháng 6 2019

a,vì N là trung điểm AC nên 2BN=BA+BC ta có

MA+NB+PC=1/2BA+1/2BC+NB=1/2 (BA+BC)+NB=1/2×2×BN+NB=BN+NB=0 (TM đề bài )

b, vì M;N;P làtrung điểm AB;AC;BC

2OM+2ON+2OP=OA+OB+OA+OC+OB+OC

=2OA+2OB+2OC

suy ra OM+ON+OP=OA+OB+OC

c,

Cm tương tự

2OB=OB'+OC

2OA=OA'+OB

2OC=OA+OC'

suy ra

2OA+2OB+2OC=OA+OB+OC+OA'+OB'+OC'

suy ra OA+OB+OC=OA'+OB'+OC'