K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2015

A B c H

Áp dụng định lý Py-ta-go ta có :  \(BC^2=CH^2+HB^2\)

mà \(HB=\left(AB-AH\right)\Leftrightarrow HB^2=\left(AB-AH\right)^2=AB^2-2AB.AH+AH^2\)

nên \(BC^2=CH^2+AB^2+AH^2-2AB.AH\)

mà \(CH^2+AH^2=AC^2\) nên \(BC^2=AB^2+AC^2-2AH.AB\)

dpcm

a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)

\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)

b: loading...

15 tháng 3 2019

Câu hỏi của nguyen thi bao tien - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo cách làm tương tự nhé!

20 tháng 9 2021
a) tam giác ABH là tam giác vuông nên AB^2 - BH^2 = AH (1) chứng minh tương tự với tam giác ACH suy ra AC^2 - CH^2 = AH^2 (2) Từ (1) và (2) ta suy ra AB^2 - BH^2 = AC^2 - CH^2 câu b mình chưa biết làm nha :))
21 tháng 7 2019

\(\hept{\begin{cases}AB^2-BH^2=AH^2\\AC^2-CH^2=AH^2\end{cases}\Rightarrow}AB^2-BH^2=AC^2-CH^2\Rightarrow AB^2+CH^2=AC^2+BH^2\)

1 tháng 8 2020

kẻ đường cao AH của tam giác ABC. 

Xét tam giác ABH và tam giác BCM có:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2220;</mo><mi>A</mi><mi>B</mi><mi>H</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#x2220;</mo><mi>B</mi><mi>C</mi><mi>M</mi></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2220;</mo><mi>A</mi><mi>H</mi><mi>B</mi><mo>=</mo><mo>&#x2220;</mo><mi>B</mi><mi>M</mi><mi>C</mi><mo>&#xA0;</mo><mfenced><mrow><mo>=</mo><mn>90</mn><mo>&#xB0;</mo></mrow></mfenced></math>

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2206;</mo><mi>A</mi><mi>B</mi><mi>H</mi><mo>~</mo><mo>&#x2206;</mo><mi>B</mi><mi>C</mi><mi>M</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfrac><mrow><mi>B</mi><mi>H</mi></mrow><mrow><mi>M</mi><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mi>B</mi></mrow><mrow><mi>B</mi><mi>C</mi></mrow></mfrac><mspace linebreak="newline"/><mo>&#x21D4;</mo><mfrac><mrow><mi>A</mi><mi>M</mi></mrow><mrow><mi>M</mi><mi>C</mi></mrow></mfrac><mo>+</mo><mn>1</mn><mo>=</mo><mfrac><mrow><mi>A</mi><mi>M</mi></mrow><mrow><mi>M</mi><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>A</mi><mi>M</mi><mo>.</mo><mi>M</mi><mi>C</mi></mrow><mrow><mi>M</mi><msup><mi>C</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mn>2</mn><msup><mfenced><mfrac><mrow><mi>A</mi><mi>B</mi></mrow><mrow><mi>B</mi><mi>C</mi></mrow></mfrac></mfenced><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>B</mi><msup><mi>H</mi><mn>2</mn></msup></mrow><mrow><mi>M</mi><msup><mi>C</mi><mn>2</mn></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>B</mi><mi>C</mi><mo>.</mo><mi>B</mi><mi>H</mi></mrow><mrow><mi>M</mi><msup><mi>C</mi><mn>2</mn></msup></mrow></mfrac><mspace linebreak="newline"/><mo>&#x21D4;</mo><mi>A</mi><mi>M</mi><mo>.</mo><mi>M</mi><mi>C</mi><mo>=</mo><mi>B</mi><mi>C</mi><mo>.</mo><mi>B</mi><mi>H</mi><mo>.</mo><mspace linebreak="newline"/></math>

Thật vậy: xét tam giác AHC và tam giác BMC có:

<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>&#x2220;</mo><mi>A</mi><mi>H</mi><mi>C</mi><mo>=</mo><mo>&#x2220;</mo><mi>B</mi><mi>M</mi><mi>C</mi><mo>=</mo><mn>90</mn><mo>&#xB0;</mo><mspace linebreak="newline"/><mo>&#x2220;</mo><mi>A</mi><mi>C</mi><mi>B</mi><mo>:</mo><mo>&#x2009;</mo><mi>g</mi><mi>&#xF3;</mi><mi>c</mi><mo>&#xA0;</mo><mi>c</mi><mi>h</mi><mi>u</mi><mi>n</mi><mi>g</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mo>&#x2206;</mo><mi>A</mi><mi>H</mi><mi>C</mi><mo>~</mo><mo>&#x2206;</mo><mi>B</mi><mi>M</mi><mi>C</mi><mspace linebreak="newline"/><mo>&#x21D2;</mo><mfrac><mrow><mi>A</mi><mi>C</mi></mrow><mrow><mi>B</mi><mi>C</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>H</mi><mi>C</mi></mrow><mrow><mi>M</mi><mi>C</mi></mrow></mfrac><mspace linebreak="newline"/><mo>&#x21D4;</mo><mi>A</mi><mi>C</mi><mo>.</mo><mi>M</mi><mi>C</mi><mo>=</mo><mi>B</mi><mi>C</mi><mo>.</mo><mi>H</mi><mi>C</mi><mo>=</mo><mi>B</mi><mi>C</mi><mo>.</mo><mi>B</mi><mi>H</mi></math>

Từ đó ta có đpcm. 

5 tháng 8 2019

a) Xét 2 tam giác vuông DHC và FBC có: ^HCD chung => \(\Delta DHC~\Delta FBC\)

=> \(\frac{CD}{CF}=\frac{CH}{BC}\) => \(CH.CF=BC.CD\) (1) 

tương tự với 2 tam giác vuông DBH và EBC có: ^EBC chung => \(\Delta DBH~\Delta EBC\)

=> \(\frac{BD}{BE}=\frac{BH}{BC}\) => \(BH.BE=BC.BD\) (2) 

(1) và (2) => \(CH.CF+BH.BE=BC\left(BD+CD\right)=BC^2\)

b) CM tương tự câu a), ta cũng có: \(AH.AD+BH.BE=AB^2;AH.AD+CH.CF=AC^2\)

cộng lại ta có đpcm