K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

Do đo: ΔBNC vuông tại N

Xet ΔABC có

BN,CM là các đường cao

BN cắt CM tại H

Do đó; H là trực tâm

=>AH vuông góc với BC

a: Xét (O) có 

ΔMBC nội tiếp

BC là đường kính

Do đó: ΔMBC vuông tại M

Xét (O) có

ΔNBC nội tiếp

BC là đường kính

Do đó:ΔNBC vuông tại N

Xét ΔABC có

BN là đường cao

CM là đường cao

BN cắt CM tại H

Do đó: AH⊥BC tại K

b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có

\(\widehat{MAC}\) chung

Do đó: ΔANB∼ΔAMC

Suy ra: AN/AM=AB/AC

hay \(AN\cdot AC=AB\cdot AM\)

24 tháng 1 2023

ít tra mạng xong tham khảo đi ạ

nếu bạn làm được thì bạn hãy làm đi , tra mạng , và tham khảo ít thôi nhé

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại I

b: Ta có: \(\widehat{AMO}=\widehat{ANO}=\widehat{AIO}\)

=>A,M,I,O,N cùng thuộc đường tròn đường kính AO

Gọi I là trung điểm của AO

=>A,M,I,O,N cùng thuộc (I)

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: OA là phân giác của góc MON

=>\(\widehat{MOA}=\widehat{NOA}\)

Xét (I) có

\(\widehat{MOA}\) là góc nội tiếp chắn cung MA

\(\widehat{NOA}\) là góc nội tiếp chắn cung NA

\(\widehat{MOA}=\widehat{NOA}\)

Do đó: \(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\)

Xét (I) có

\(\widehat{MIA}\) là góc nội tiếp chắn cung MA

\(\widehat{NIA}\) là góc nội tiếp chắn cung NA

\(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\left(cmt\right)\)

Do đó: \(\widehat{MIA}=\widehat{NIA}\)

=>IA là phân giác của góc MIN

29 tháng 10 2021

a: Xét (O) có

ΔBNC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBNC vuông tại N

Xét (O) có 

ΔBMC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét ΔABC có

BN là đường cao

CM là đường cao

BN cắt CM tại H

Do đó: AH\(\perp\)BC

a: Xét (O) có 

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét ΔABC có

BD là đường cao

CE là đường cao

BD cắt CE tại H

Do đó: AH⊥BC

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là các đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)

nên HECF là tứ giác nội tiếp

=>\(\widehat{HEF}=\widehat{HCF}\)

31 tháng 1 2024

Bạn giúp mình phần vẽ hình được không ạ ?