Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : BC là đường kính của (O) \(\Rightarrow CM\perp AB,BN\perp AC\)
Mà \(BN\cap CM=H\Rightarrow H\) là trực tâm tam giác
\(\Rightarrow AK\perp BC\)
b ) Ta có : \(CM\perp AB,BN\perp AC\)
\(\Rightarrow\cos\widehat{A}=\frac{AM}{AC}=\frac{AN}{AB}\)
\(\Rightarrow AM.AB=AN.AC\)
c ) Ta có : \(AK\perp BC,BN\perp AC,CM\perp AB\)
\(\Rightarrow AMHN,MHKB,ANKB\) nội tiếp
\(\Rightarrow\widehat{KMH}=\widehat{KBH}=\widehat{KBN}=\widehat{KAN}=\widehat{HAN}=\widehat{HMN}\)
\(\Rightarrow MH\) là phân giác \(\widehat{NMK}\)
d ) Ta có :
\(\widehat{SMB}=\widehat{NCB}\left(+\widehat{BMN}=180^0\right)\)
\(\Rightarrow\Delta SMB\sim\Delta SCN\left(g.g\right)\Rightarrow\frac{SM}{SC}=\frac{SB}{SN}\Rightarrow SB.SC=SM.SN\)
Theo câu c ) \(\Rightarrow\widehat{NMK}=2\widehat{CMN}=2\widehat{NBC}=\widehat{NOC}\)
\(\Rightarrow MNOK\) nội tiếp
\(\Rightarrow\widehat{SKM}=\widehat{MNO}\)
\(\Rightarrow\Delta SMK\sim\Delta SON\left(g.g\right)\Rightarrow\frac{SM}{SO}=\frac{SK}{SN}\Rightarrow SM.SN=SK.SO\)
\(\Rightarrow SB.SC=SK.SO\)
Từng bài 1 thôi bạn!
A B C J O N K H M
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
H A B C D E O F
a) Xét tam giác AEC và tam giác ADB
có:
\(\widehat{AEC}=\widehat{ADB}=90^o\)
\(\widehat{EAC}=\widehat{DAB}\)( đối đỉnh)
=> \(\Delta AEC~\Delta ADB\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\Rightarrow AE.AB=AD.AC\)
b) Xét tam giác HCB có hai đường cao CD và BE cắt nhau tại A
=> A là trực tâm tam giác ACB
=> HA vuông BC
=> AF vuông BC
Xét tứ giác BFEH có:
\(\widehat{BFH}=\widehat{HEB}=90^o\)
=> BFEH nội tiếp
c) Ta có: \(\widehat{EOC}=2\widehat{EBC}\)( góc ở tâm có độ lớn gấp 2 lần góc nội tiếp cùng chắn một cung)
Xét tứ giác ADBF có: \(\widehat{ADB}+\widehat{AFB}=90^o+90^o=180^o\)
=> ADBF nội tiếp
=> \(\widehat{ABF}=\widehat{ADF}\)( cùng chắn cung AF) hay \(\widehat{EBC}=\widehat{CDF}\)
Mặt khác \(\widehat{EDC}=\widehat{EBC}\)( cùng chắn cung EC)
=> \(\widehat{EOC}=2.\widehat{EBC}=\widehat{CDF}+\widehat{EDC}=\widehat{EDF}\)
=> \(\widehat{FOE}+\widehat{FDE}=\widehat{FOE}+\widehat{EOC}=180^o\)( hai góc bù nhau)
=> Tứ giác DEOF nội tiếp
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a: góc BEC=góc BDC=1/2*180=90 độ
=>CE vuông góc AB, BD vuông góc AC
góc AEH+góc ADH=180 độ
=>AEHD nội tiếp
b: góc EFH=góc ABD
góc DFH=góc ACE
mà góc ABD=góc ACE
nên góc EFH=góc DFH
=>FH là phân giác của góc EFD
a: Xét (O) có
ΔMBC nội tiếp
BC là đường kính
Do đó: ΔMBC vuông tại M
Xét (O) có
ΔNBC nội tiếp
BC là đường kính
Do đó:ΔNBC vuông tại N
Xét ΔABC có
BN là đường cao
CM là đường cao
BN cắt CM tại H
Do đó: AH⊥BC tại K
b: Xét ΔANB vuông tại N và ΔAMC vuông tại M có
\(\widehat{MAC}\) chung
Do đó: ΔANB∼ΔAMC
Suy ra: AN/AM=AB/AC
hay \(AN\cdot AC=AB\cdot AM\)