K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

\(\widehat{ABK}=90^o\)(Góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BK\perp AB\) mặt khác \(CH\perp AB\)(Do H là trực tâm) \(\Rightarrow BK//CH\)

C/m tương tự cũng có \(CK//BH\)

=> Tứ giác BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Câu 2:

Gọi giao của BC với KH là M' => M là trung điểm của BC (M' là giao của hai đường chéo hbh BHCK)

Mặt khác M cũng là trung điểm của BC (Trong 1 đường tròn bán kính vuông gó với dây cung thì chia đôi dây cung)

=> \(M\equiv M'\) => H; M;K thẳng hàng

24 tháng 10 2022

a: Xét (O) có

ΔABK nội tiếp

AK là đường kính

Do đó: ΔABK vuông tại B

=>BK vuông góc với AB

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

=>AC vuông góc với CK

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Vì BHCK là hình bình hành

nên BC cắt HK tại trung điểm của mỗi đường

=>M là trung điểm của HK

Xét ΔKAH có

KO/KA=KM/KH

nên OM//AH và OM/AH=KO/KA=1/2

=>OM=1/2AH

1 tháng 3 2016

a)Gọi I là trung điểm của tam giác BC

Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC

=>IE=ID=IB=IC

=> tứ giác BCDE nội tiếp.  tâm đường tròn là I

b)AFK=90 ( dg cao thứ 3)

ACK=90 (chắn nữa dg tròn)

=>AFB=ACK

c)BD vg góc với AC

ACK=90 =>CK vg góc với AC

=>CK song song với BH

tuong tu CH song song voi BK

=>BHCK là hinh binh hanh

*vì I là trung điểm của BC 

=>I cung la trung diem cua HK

=>H,I,K thang hang

7 tháng 10 2021

\(a,\widehat{ABK}=\widehat{ACK}=90^0\) (góc nt chắn nửa đường tròn) nên \(\Delta ABK;\Delta ACK\) vuông tại B và C

\(b,\left\{{}\begin{matrix}CK//BH\left(\perp AC\right)\\BK//CH\left(\perp AB\right)\end{matrix}\right.\Rightarrow BHCK\) là hbh

\(c,\left\{{}\begin{matrix}AO=OM=R\\OM//AH\left(\perp BC\right)\end{matrix}\right.\Rightarrow HM=MK\)

Hình bình hành BHCK có M là trung điểm HK nên cũng là trung điểm BC

\(d,\left\{{}\begin{matrix}AO=OK=R\\HM=MK\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHK

\(\Rightarrow OM=\dfrac{1}{2}AH\)

17 tháng 3 2023

Giải

b) Ta có: CH\(\perp\)AB(gt)

BK\(\perp\)AB(ΔABK vuông tại B)

Do đó: CH//BK(Định lí 1 từ vuông góc tới song song)

Ta có: BH\(\perp\)AC(gt)

CK\(\perp\)AC(ΔACK vuông tại C)

Do đó: BH//CK(Định lí 1 từ vuông góc tới song song)

Xét tứ giác BHCK có 

CH//BK(cmt)

BH//CK(cmt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a) Xét (O) có 

ΔABK nội tiếp đường tròn(A,B,K∈(O))

AK là đường kính(gt)

Do đó: ΔABK vuông tại B(Định lí)

Xét (O) có

ΔACK nội tiếp đường tròn(A,C,K∈(O))

AK là đường kính(gt)

Do đó: ΔACK vuông tại C(Định lí)