K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔABE~ΔACF

b: Sửa đề: Qua B kẻ song song với CF

Xét tứ giác BICK có

BI//CK

BK//CI

Do đó: BICK là hình bình hành

BI//CK

BI\(\perp\)AC

Do đó: CK\(\perp\)CA

CI//BK

CI\(\perp\)AB

Do đó:BK\(\perp\)BA

Xét tứ giác ABKC có \(\widehat{ABK}+\widehat{ACK}=90^0+90^0=180^0\)

nên ABKC là tứ giác nội tiếp đường tròn đường kính tâm M, đường kính AK

Xét (M) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AKC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AKC}\)

Xét ΔAFI vuông tại F và ΔACK vuông tại C có

\(\widehat{FIA}=\widehat{AKC}\left(=\widehat{ABC}\right)\)

Do đó: ΔAFI~ΔACK

=>\(\dfrac{FA}{CA}=\dfrac{FI}{CK}\)

=>\(\dfrac{FI}{FA}=\dfrac{CK}{CA}\)

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE∼ΔACF(g-g)

31 tháng 3 2021

Có thể giải dùm mik câu b, c ko. Không thì câu b thôi cx đc😢

1 tháng 5 2016

Mình bổ sung câu c nha 

Xét tứ giác HBDC có 

BH // DC (GT)

HC // BD (GT)

\(\Rightarrow\) HBDC là hình bình hành 

Mà I là trung điểm của BC 

\(\Rightarrow\) I là trung điểm của HD

\(\Rightarrow\) 3 điểm H,I,D thẳng hàng

1 tháng 5 2016

A B C E F H D

a, Xét \(\Delta ABEv\text{à}\Delta ACF\)  

\(AEB=\text{AF}C\left(=90^o\right)\)

\(BAE=FAC\) (góc chung)

\(\Rightarrow\Delta ABE~\Delta ACF\left(g.g\right)\)

b,Từ \(\Delta ABE~\Delta ACF\) (chứng minh trên)

\(\Rightarrow\frac{AB}{AC}=\frac{AE}{\text{AF}}\Rightarrow\frac{\text{AF}}{AC}=\frac{AE}{AB}\)

Xét \(\Delta AEFva\Delta ABC\)

\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)

\(EAF=BAC\) (Góc chung)

\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\frac{AE}{AB}=\frac{\text{EF}}{BC}\Rightarrow AE.BC=AB.\text{EF}\)

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)

2 tháng 5 2023

<Tự vẽ hình nha>

a)Xét ΔABE và ΔACF

góc AEB=góc AFC

góc BEA=góc CFA

Vậy ΔABE ∼ ΔACF(g.g)

\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC

\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)

b)Xét ΔAEF và ΔABC

Góc A:chung

\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)

Vậy ΔAEF∼ΔABC (g.g)

 

 

 

 

 

a: Xét ΔABE và ΔACF có

góc AEB=góc AFC

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

=>FE/BC=AE/AB

=>FE*AB=AE*BC

a: Xét ΔABE và ΔACF có

góc AEB=góc AFC

góc BAE chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

=>EF/BC=AE/AB

=>AE*BC=AB*EF

4 tháng 5 2021

a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:

\(\widehat{AEB}=\widehat{AFC}\)

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gn\right)\)

b) Vì \(\Delta ABE\sim\Delta ACF\)

\(\Rightarrow\widehat{ABE}=\widehat{ACF}\left(1\right)\)

Theo bài ra, ta có: AB // d

\(\Rightarrow\widehat{ABE}=\widehat{BED}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\widehat{ACF}=\widehat{BED}\)

Xét \(\Delta HED\) và \(\Delta HEC\) có:

\(\widehat{BED}=\widehat{ACF}\)

\(\widehat{EHC}\) chung

\(\Rightarrow\Delta HED\sim\Delta HEC\left(g-g\right)\)

\(\Rightarrow\dfrac{HE}{HD}=\dfrac{HC}{HE}\)

\(\Leftrightarrow HE^2=HD.HC\)

4 tháng 5 2021

có thể vẽ hình cho em được ko chị