Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACF(g-g)
Mình bổ sung câu c nha
Xét tứ giác HBDC có
BH // DC (GT)
HC // BD (GT)
\(\Rightarrow\) HBDC là hình bình hành
Mà I là trung điểm của BC
\(\Rightarrow\) I là trung điểm của HD
\(\Rightarrow\) 3 điểm H,I,D thẳng hàng
A B C E F H D
a, Xét \(\Delta ABEv\text{à}\Delta ACF\)
\(AEB=\text{AF}C\left(=90^o\right)\)
\(BAE=FAC\) (góc chung)
\(\Rightarrow\Delta ABE~\Delta ACF\left(g.g\right)\)
b,Từ \(\Delta ABE~\Delta ACF\) (chứng minh trên)
\(\Rightarrow\frac{AB}{AC}=\frac{AE}{\text{AF}}\Rightarrow\frac{\text{AF}}{AC}=\frac{AE}{AB}\)
Xét \(\Delta AEFva\Delta ABC\)
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
\(EAF=BAC\) (Góc chung)
\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\frac{AE}{AB}=\frac{\text{EF}}{BC}\Rightarrow AE.BC=AB.\text{EF}\)
a) Xét ΔABC có
BE là đường cao ứng với cạnh AC(gt)
CF là đường cao ứng với cạnh AB(gt)
BE cắt CF tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: AH⊥BC
b) Xét tứ giác BHCK có
HC//BK(gt)
BH//CK(gt)
Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà M là trung điểm của BC(gt)
nên M là trung điểm của HK
hay H,M,K thẳng hàng(đpcm)
<Tự vẽ hình nha>
a)Xét ΔABE và ΔACF
góc AEB=góc AFC
góc BEA=góc CFA
Vậy ΔABE ∼ ΔACF(g.g)
⇒\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC
⇒\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)
b)Xét ΔAEF và ΔABC
Góc A:chung
\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)
Vậy ΔAEF∼ΔABC (g.g)
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>FE/BC=AE/AB
=>FE*AB=AE*BC
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc BAE chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>EF/BC=AE/AB
=>AE*BC=AB*EF
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC}\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gn\right)\)
b) Vì \(\Delta ABE\sim\Delta ACF\)
\(\Rightarrow\widehat{ABE}=\widehat{ACF}\left(1\right)\)
Theo bài ra, ta có: AB // d
\(\Rightarrow\widehat{ABE}=\widehat{BED}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\widehat{ACF}=\widehat{BED}\)
Xét \(\Delta HED\) và \(\Delta HEC\) có:
\(\widehat{BED}=\widehat{ACF}\)
\(\widehat{EHC}\) chung
\(\Rightarrow\Delta HED\sim\Delta HEC\left(g-g\right)\)
\(\Rightarrow\dfrac{HE}{HD}=\dfrac{HC}{HE}\)
\(\Leftrightarrow HE^2=HD.HC\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE~ΔACF
b: Sửa đề: Qua B kẻ song song với CF
Xét tứ giác BICK có
BI//CK
BK//CI
Do đó: BICK là hình bình hành
BI//CK
BI\(\perp\)AC
Do đó: CK\(\perp\)CA
CI//BK
CI\(\perp\)AB
Do đó:BK\(\perp\)BA
Xét tứ giác ABKC có \(\widehat{ABK}+\widehat{ACK}=90^0+90^0=180^0\)
nên ABKC là tứ giác nội tiếp đường tròn đường kính tâm M, đường kính AK
Xét (M) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AKC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AKC}\)
Xét ΔAFI vuông tại F và ΔACK vuông tại C có
\(\widehat{FIA}=\widehat{AKC}\left(=\widehat{ABC}\right)\)
Do đó: ΔAFI~ΔACK
=>\(\dfrac{FA}{CA}=\dfrac{FI}{CK}\)
=>\(\dfrac{FI}{FA}=\dfrac{CK}{CA}\)