K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

a) Gọi D,E,F lần lượt là tiếp điểm của (I;r) với MN,PQ,RS; T,U,V lần lượt là tiếp điểm của (I;r) với BC,AC,AB

Xét đường tròn (I;r) có hai tiếp tuyến tại D và U cắt nhau tại M \(\Rightarrow MD=MU\)(tính chất hai tiếp tuyến cắt nhau)

Tương tự, ta cũng có: \(SU=SF;\)\(RF=RT;\)\(QT=QE;\)\(PE=PV;\)\(NV=ND\)

Mà \(P_1=AM+AN+MN=AM+AN+MD+ND=AM+AN+MU+NV\)(1)

\(P_2=BP+BQ+PQ=BP+BQ+PE+QE=BP+BQ+PV+QT\)(2)

\(P_3=CS+CR+SR=CS+CR+SF+RF=CS+SR+RT+SU\)(3)

Từ (1), (2) và (3) \(\Rightarrow P_1+P_2+P_3=AM+AN+MU+NV+BP+BQ+PV+QT+CS+CR+RT+SU\)

\(=AM+AN+BP+BQ+CS+CR+\left(MU+SU\right)+\left(RT+QT\right)+\left(PV+NV\right)\)

\(=AM+AN+BP+BQ+CS+CR+MS+RQ+NP\)

\(=\left(AM+CS+MS\right)+\left(AN+BP+NP\right)+\left(BQ+QR+RC\right)\)

\(=AC+AB+BC=P\)

Vậy đẳng thức được chứng minh

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0
Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

4 tháng 10 2018

a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được  b + c - a 2 = AD

b,  S A B C = S A I B + S B I C + S C I A

Mà ID = IE = IF = r =>  S A B C  = p.r

c, Vì AM là phân giác của  B A C ^ =>  B M M C = B A A C

Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b

9 tháng 11 2017

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng k_1: Đoạn thẳng [X, Y] Đoạn thẳng n: Đoạn thẳng [B, Y] Đoạn thẳng p: Đoạn thẳng [E, A] Đoạn thẳng q: Đoạn thẳng [E, I] Đoạn thẳng r: Đoạn thẳng [Y, K] Đoạn thẳng s: Đoạn thẳng [N, I] Đoạn thẳng a: Đoạn thẳng [I, M] Đoạn thẳng b: Đoạn thẳng [E, M] Đoạn thẳng c: Đoạn thẳng [A, I] Đoạn thẳng d: Đoạn thẳng [N, M] B = (-1.6, -0.66) B = (-1.6, -0.66) B = (-1.6, -0.66) C = (5.82, -0.68) C = (5.82, -0.68) C = (5.82, -0.68) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm X: Điểm trên f Điểm X: Điểm trên f Điểm X: Điểm trên f Điểm Y: Giao điểm đường của j, i Điểm Y: Giao điểm đường của j, i Điểm Y: Giao điểm đường của j, i Điểm I: Giao điểm đường của l, m Điểm I: Giao điểm đường của l, m Điểm I: Giao điểm đường của l, m Điểm E: Trung điểm của n Điểm E: Trung điểm của n Điểm E: Trung điểm của n Điểm K: Giao điểm đường của l, f Điểm K: Giao điểm đường của l, f Điểm K: Giao điểm đường của l, f Điểm N: Giao điểm đường của m, i Điểm N: Giao điểm đường của m, i Điểm N: Giao điểm đường của m, i Điểm M: Giao điểm đường của t, k_1 Điểm M: Giao điểm đường của t, k_1 Điểm M: Giao điểm đường của t, k_1 K

Gọi trung điểm của XY, YC và BC lần lượt là M, N và K..

Do I là tâm đường tròn ngoại tiếp tam giác XYC nên \(\widehat{YMI}=\widehat{YNI}=90^o\)

Vậy ta có YMIN là tứ giác nội tiếp hay \(\widehat{IYN}=\widehat{IMN}\Rightarrow\widehat{AYI}=\widehat{EMI}\)        (1)

Xét tam giác BYX có E và M lần lượt là trung điểm của YB và YX nên EM song song và bằng một nửa BX.

Ta cũng có ngay E, M, N thẳng hàng.

Do XY // AB nên \(\frac{AY}{AC}=\frac{BX}{BC}\Rightarrow\frac{AY}{BX}=\frac{AC}{BC}\)

\(\Rightarrow\frac{AY}{EM}=\frac{AY}{\frac{BX}{2}}=2.\frac{AY}{BX}=\frac{2.AC}{BC}=\frac{AC}{BK}\)'

Do tam giác ABC cân tại A nên \(AK\perp BC\)

Xét tam giác vuông ABK, theo định nghĩa tỉ số lượng giác thì \(cos\widehat{ABC}=\frac{BK}{AB}\)

Vậy thì  \(\frac{YI}{MI}=\frac{1}{sin\widehat{XYK}}=\frac{1}{cos\widehat{YXK}}=\frac{1}{cos\widehat{ABC}}=\frac{1}{\frac{BK}{AB}}=\frac{AB}{BK}=\frac{AC}{BK}\)

Vậy nên \(\frac{AY}{EM}=\frac{YI}{MI}\)               (2) 

Từ (1) và (2) ta có \(\Delta AYI\sim\Delta EMI\left(c-g-c\right)\Rightarrow\widehat{IEN}=\widehat{IAN}\) 

Xét tứ giác AEIN có \(\widehat{IEN}=\widehat{IAN}\) nên nó là tứ giác nội tiếp.

\(\Rightarrow\widehat{AEI}=180^o-\widehat{ANI}=90^o\)

9 tháng 11 2017

mình xin sửa lại yêu cầu là: chứng minh góc AEI bằng 90 

mong các bạn giúp