K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng k_1: Đoạn thẳng [X, Y] Đoạn thẳng n: Đoạn thẳng [B, Y] Đoạn thẳng p: Đoạn thẳng [E, A] Đoạn thẳng q: Đoạn thẳng [E, I] Đoạn thẳng r: Đoạn thẳng [Y, K] Đoạn thẳng s: Đoạn thẳng [N, I] Đoạn thẳng a: Đoạn thẳng [I, M] Đoạn thẳng b: Đoạn thẳng [E, M] Đoạn thẳng c: Đoạn thẳng [A, I] Đoạn thẳng d: Đoạn thẳng [N, M] B = (-1.6, -0.66) B = (-1.6, -0.66) B = (-1.6, -0.66) C = (5.82, -0.68) C = (5.82, -0.68) C = (5.82, -0.68) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm X: Điểm trên f Điểm X: Điểm trên f Điểm X: Điểm trên f Điểm Y: Giao điểm đường của j, i Điểm Y: Giao điểm đường của j, i Điểm Y: Giao điểm đường của j, i Điểm I: Giao điểm đường của l, m Điểm I: Giao điểm đường của l, m Điểm I: Giao điểm đường của l, m Điểm E: Trung điểm của n Điểm E: Trung điểm của n Điểm E: Trung điểm của n Điểm K: Giao điểm đường của l, f Điểm K: Giao điểm đường của l, f Điểm K: Giao điểm đường của l, f Điểm N: Giao điểm đường của m, i Điểm N: Giao điểm đường của m, i Điểm N: Giao điểm đường của m, i Điểm M: Giao điểm đường của t, k_1 Điểm M: Giao điểm đường của t, k_1 Điểm M: Giao điểm đường của t, k_1 K

Gọi trung điểm của XY, YC và BC lần lượt là M, N và K..

Do I là tâm đường tròn ngoại tiếp tam giác XYC nên \(\widehat{YMI}=\widehat{YNI}=90^o\)

Vậy ta có YMIN là tứ giác nội tiếp hay \(\widehat{IYN}=\widehat{IMN}\Rightarrow\widehat{AYI}=\widehat{EMI}\)        (1)

Xét tam giác BYX có E và M lần lượt là trung điểm của YB và YX nên EM song song và bằng một nửa BX.

Ta cũng có ngay E, M, N thẳng hàng.

Do XY // AB nên \(\frac{AY}{AC}=\frac{BX}{BC}\Rightarrow\frac{AY}{BX}=\frac{AC}{BC}\)

\(\Rightarrow\frac{AY}{EM}=\frac{AY}{\frac{BX}{2}}=2.\frac{AY}{BX}=\frac{2.AC}{BC}=\frac{AC}{BK}\)'

Do tam giác ABC cân tại A nên \(AK\perp BC\)

Xét tam giác vuông ABK, theo định nghĩa tỉ số lượng giác thì \(cos\widehat{ABC}=\frac{BK}{AB}\)

Vậy thì  \(\frac{YI}{MI}=\frac{1}{sin\widehat{XYK}}=\frac{1}{cos\widehat{YXK}}=\frac{1}{cos\widehat{ABC}}=\frac{1}{\frac{BK}{AB}}=\frac{AB}{BK}=\frac{AC}{BK}\)

Vậy nên \(\frac{AY}{EM}=\frac{YI}{MI}\)               (2) 

Từ (1) và (2) ta có \(\Delta AYI\sim\Delta EMI\left(c-g-c\right)\Rightarrow\widehat{IEN}=\widehat{IAN}\) 

Xét tứ giác AEIN có \(\widehat{IEN}=\widehat{IAN}\) nên nó là tứ giác nội tiếp.

\(\Rightarrow\widehat{AEI}=180^o-\widehat{ANI}=90^o\)

9 tháng 11 2017

mình xin sửa lại yêu cầu là: chứng minh góc AEI bằng 90 

mong các bạn giúp

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

a: góc BAC=góc BCA

=>sđ cung BC=sđ cung BA

b: xy//DE
=>góc AED=góc yAE=góc ABC

c: góc AED=góc ABC

=>góc ABC+góc DEC=180 độ

=>BCDE nội tiếp

 

22 tháng 12 2016

(Đề hay quá!)

Gọi \(X\) là trung điểm \(BC\). CM được \(DF,AI,MN\) đồng quy tại điểm ta gọi là \(K\).

Theo tính chất đường trung bình ta có \(MN\) song song \(AB\).

Do tam giác \(ABC\) vuông tại \(A\) cũng suy ra \(AB\) song song với \(IE\).

Áp dụng định lí Thales liên tục ta có:

\(\frac{AN}{IE}=\frac{MN}{MI}=\frac{KA}{KI}=\frac{AP}{ID}\).

Do \(ID=IE\) nên \(AN=AP\). Kết thúc chứng minh.

22 tháng 12 2016

ê,chứng minh AI,DF,MX đồng quy kiểu gị ?