K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB=CD

2: AB+BC>AC

mà AC>2BM

nên AB+BC>2BM

7 tháng 3 2022

THANKS

câu trả lời của Lương Ngọc Anh đúng rồi mình hơi nhầm lộn 1 chút :)

25 tháng 6 2016

mình nhầm nha 

ab//cd

bn//ac

Xét tứ giác ABCD có

M là trung điểm của AC
M là trung điểm của BD

Do đó:ABCD là hình bình hành

Suy ra: AD//BC và AD=BC

Xét tứ giác AEBD có

AD//BE

AD=BE

Do đó: AEBD là hình bình hành

Suy ra: Hai đường chéo AB và ED cắt nhau tại trung điểm của mỗi đường

hay Y là trung điểm của ED

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có 

M la trung điểm của AC

M là trung điểm của BD

DO đó: ABCD là hình bình hành

Suy ra: AB//CD và AB=CD

9 tháng 12 2018

a) CM Tam giac ABM = tam giac CDM

Xét tam giac ABM và Tam giác CDM, ta có:

MA = MC (gt)

MB=MD (gt)

Góc AMB = góc DMC (đđ)

Suy ra Tam giác ABM = Tam giác CDM

b) CM AB song song CD

Ta có: Góc MBA =góc MCD ( cmt)

Mà 2 góc này ở vị trí so le trong, nên suy ra AB//CD

c) CM E là trung điểm AC

Ta có: Tứ giác ABCD có:

M là trung điểm AC gt)

M là trung điểm BD (gt)

Mà AC cắt BD tại M

Suy ra: Tứ giac ABCD là hình bình hành

Ta lại có: MN là trung điểm BC , MN //AB//CD.

Do đó NE cũng //AB//CD , và E cũng là trung điểm của AD.

25 tháng 6 2016

bạn giải đc ko vậy giải giùm mình với bạn 

mơn bạn nhìu

9 tháng 8 2017

. A B C M D E I 1 1 2 2 2 1 2

\(Xét\)\(\Delta AMB\)\(\Delta DMC\)có:

\(AM=MC\)(M là trung điểm của AC)

\(\widehat{M}_1=\widehat{M}_2\)(2 góc đối đỉnh)

\(BM=MC\)(gt)

=>\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=>\(AB=DC;\widehat{A}_1=\widehat{C}_1\)

Mà 2 góc này ở vị trí so le trong

=>AB//DC

=>\(\widehat{ABE}=\widehat{DCB}\)(2 góc đồng vị)

Xét \(\Delta ABE\)\(\Delta DCB\)có:

\(AB=DC\)

\(\widehat{ABE}=\widehat{DCB}\)

\(EB=BC\)

=>\(\Delta ABE=\Delta DCB\left(c-g-c\right)\)

=>\(AE=BD;\widehat{AEB}=\widehat{DBC}\)

Mà 2 góc này ở vị trí đồng vị

=>AE//BD

Xét \(\Delta AIE\)\(\Delta BID\)có:

\(\widehat{A}_2=\widehat{B}_2\)(AE//BD)

\(AE=DC\)

\(\widehat{AEI}=\widehat{BDI}\)(AE//BD)

=>\(\Delta AIE=\Delta BID\left(g-c-g\right)\)

=>\(AI=BI\)

Vậy AI=IB