Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
2: AB+BC>AC
mà AC>2BM
nên AB+BC>2BM
câu trả lời của Lương Ngọc Anh đúng rồi mình hơi nhầm lộn 1 chút :)
Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
Suy ra: AD//BC và AD=BC
Xét tứ giác AEBD có
AD//BE
AD=BE
Do đó: AEBD là hình bình hành
Suy ra: Hai đường chéo AB và ED cắt nhau tại trung điểm của mỗi đường
hay Y là trung điểm của ED
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M la trung điểm của AC
M là trung điểm của BD
DO đó: ABCD là hình bình hành
Suy ra: AB//CD và AB=CD
a) CM Tam giac ABM = tam giac CDM
Xét tam giac ABM và Tam giác CDM, ta có:
MA = MC (gt)
MB=MD (gt)
Góc AMB = góc DMC (đđ)
Suy ra Tam giác ABM = Tam giác CDM
b) CM AB song song CD
Ta có: Góc MBA =góc MCD ( cmt)
Mà 2 góc này ở vị trí so le trong, nên suy ra AB//CD
c) CM E là trung điểm AC
Ta có: Tứ giác ABCD có:
M là trung điểm AC gt)
M là trung điểm BD (gt)
Mà AC cắt BD tại M
Suy ra: Tứ giac ABCD là hình bình hành
Ta lại có: MN là trung điểm BC , MN //AB//CD.
Do đó NE cũng //AB//CD , và E cũng là trung điểm của AD.
. A B C M D E I 1 1 2 2 2 1 2
\(Xét\)\(\Delta AMB\)và \(\Delta DMC\)có:
\(AM=MC\)(M là trung điểm của AC)
\(\widehat{M}_1=\widehat{M}_2\)(2 góc đối đỉnh)
\(BM=MC\)(gt)
=>\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
=>\(AB=DC;\widehat{A}_1=\widehat{C}_1\)
Mà 2 góc này ở vị trí so le trong
=>AB//DC
=>\(\widehat{ABE}=\widehat{DCB}\)(2 góc đồng vị)
Xét \(\Delta ABE\)và \(\Delta DCB\)có:
\(AB=DC\)
\(\widehat{ABE}=\widehat{DCB}\)
\(EB=BC\)
=>\(\Delta ABE=\Delta DCB\left(c-g-c\right)\)
=>\(AE=BD;\widehat{AEB}=\widehat{DBC}\)
Mà 2 góc này ở vị trí đồng vị
=>AE//BD
Xét \(\Delta AIE\)và \(\Delta BID\)có:
\(\widehat{A}_2=\widehat{B}_2\)(AE//BD)
\(AE=DC\)
\(\widehat{AEI}=\widehat{BDI}\)(AE//BD)
=>\(\Delta AIE=\Delta BID\left(g-c-g\right)\)
=>\(AI=BI\)
Vậy AI=IB