K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

bài này ở sách nào v bạn

23 tháng 10 2020

b, từ cm trên suy ra :△BMI ∼ △INC

\(\frac{BM}{IN}=\frac{MI}{NC}\)

⇒ BM.CN = MI.NI

ta có : △AMN là tam giác cân

⇒ MI = NI

⇒ BM.CN = \(IM^2\)

ta lại có : △AIM vuông

\(IM^2\)= \(AM^2-AI^2\) ⇒ BM.CN = \(AM^2-AI^2\)

\(=\)\(AM.AN-AI^2=\left(AB-BM\right)\left(AC-CN\right)-AI^2\)

\(=\)\(AB.AC-AB.CN-BM.AC+BM.CN-AI^2\)

\(BM.AC+CN.AB+AI^2=AB.AC\)

23 tháng 10 2020

giải câu b giùm mk vs

16 tháng 10 2017

a) Ta có: \(\widehat{BIM}\) + \(\widehat{MIA}\) = 180 - (\(\widehat{\dfrac{A}{2}}\) + \(\widehat{\dfrac{B}{2}}\))

=> \(\widehat{BIM}\) = 90 - (\(\widehat{\dfrac{A}{2}}\) + \(\widehat{\dfrac{B}{2}}\))

\(\widehat{BCI}\) = 90 - (\(\widehat{\dfrac{A}{2}}\) + \(\widehat{\dfrac{B}{2}}\))

=> \(\widehat{BIM}\) = \(\widehat{BCI}\)

=> \(\Delta\)BIM \(\sim\)\(\Delta\)BCI (g.g)

=> \(\overset{ }{\dfrac{BI}{BM}}\) = \(\overset{ }{\dfrac{BC}{BI}}\) => BI2 = BM.BC (1)

C/m tương tự ta có \(\Delta\)ICN \(\sim\)\(\Delta\)BCI (g.g)

=> \(\overset{ }{\dfrac{CI}{CN}}\) = \(\overset{ }{\dfrac{BC}{CI}}\) => CI2 = CN.BC (2)

Từ (1) và (2) => \(\overset{ }{\dfrac{BI^2}{CI^2}}\) = \(\overset{ }{\dfrac{BM}{CN}}\) (đpcm)

b) Tam giác MIB đồng dạng với tam giác NIC, viết ra tỉ số rồi thay vào VT là ra

22 tháng 9 2019

A B C I O M N K J

Gọi giao điểm của hai tia MA và BI là J.

Ta thấy I là tâm nội tiếp \(\Delta\)ABC, CI cắt (ABC) tại M. Suy ra M là điểm chính giữa cung AB không chứa C.

Từ đó ta có biến đổi góc ^AJB = 1800 - ^AMB - ^IBM = (^ACB - ^ABC)/2 = ^AKB

Suy ra tứ giác ABKJ nội tiếp. Mà BJ là phân giác góc ABK nên (JA = (JK hay JA = JK

Đồng thời IM // JK (Vì ^JKB = ^BAM = ^BCM)

Mặt khác ^MAI = ^MIA = (^BAC + ^ACB)/2 nên MI = MA. Áp dụng ĐL Thales ta có:

\(\frac{MI}{KJ}=\frac{AM}{AJ}=\frac{NI}{NJ}\). Kết hợp với ^MIN = ^KJN (IM // JK) suy ra \(\Delta\)MIN ~ \(\Delta\)KJN (c.g.c)

Suy ra ^MNI = ^KNJ. Lại có I,N,J thẳng hàng, dẫn đến M,N,K thẳng hàng (đpcm).