K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

b, từ cm trên suy ra :△BMI ∼ △INC

\(\frac{BM}{IN}=\frac{MI}{NC}\)

⇒ BM.CN = MI.NI

ta có : △AMN là tam giác cân

⇒ MI = NI

⇒ BM.CN = \(IM^2\)

ta lại có : △AIM vuông

\(IM^2\)= \(AM^2-AI^2\) ⇒ BM.CN = \(AM^2-AI^2\)

\(=\)\(AM.AN-AI^2=\left(AB-BM\right)\left(AC-CN\right)-AI^2\)

\(=\)\(AB.AC-AB.CN-BM.AC+BM.CN-AI^2\)

\(BM.AC+CN.AB+AI^2=AB.AC\)

23 tháng 10 2020

giải câu b giùm mk vs

1 tháng 12 2017

bài này ở sách nào v bạn

16 tháng 10 2017

a) Ta có: \(\widehat{BIM}\) + \(\widehat{MIA}\) = 180 - (\(\widehat{\dfrac{A}{2}}\) + \(\widehat{\dfrac{B}{2}}\))

=> \(\widehat{BIM}\) = 90 - (\(\widehat{\dfrac{A}{2}}\) + \(\widehat{\dfrac{B}{2}}\))

\(\widehat{BCI}\) = 90 - (\(\widehat{\dfrac{A}{2}}\) + \(\widehat{\dfrac{B}{2}}\))

=> \(\widehat{BIM}\) = \(\widehat{BCI}\)

=> \(\Delta\)BIM \(\sim\)\(\Delta\)BCI (g.g)

=> \(\overset{ }{\dfrac{BI}{BM}}\) = \(\overset{ }{\dfrac{BC}{BI}}\) => BI2 = BM.BC (1)

C/m tương tự ta có \(\Delta\)ICN \(\sim\)\(\Delta\)BCI (g.g)

=> \(\overset{ }{\dfrac{CI}{CN}}\) = \(\overset{ }{\dfrac{BC}{CI}}\) => CI2 = CN.BC (2)

Từ (1) và (2) => \(\overset{ }{\dfrac{BI^2}{CI^2}}\) = \(\overset{ }{\dfrac{BM}{CN}}\) (đpcm)

b) Tam giác MIB đồng dạng với tam giác NIC, viết ra tỉ số rồi thay vào VT là ra