Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
+,Có CK vuông góc AB
BD vuông góc AB
=> CK // BD
=> CE //BD (*)
+,Có BH vuông góc AC
CD vuông góc AC
=> BH // CD
=> BE //CD (**)
Từ (*) (**) => BDCE là hình bình hành
b.
Có BDCE là hình bình hành (cmt)
=> đ/chéo BC giao đ/chéo DE tại trung điểm mỗi đường
mà M là trung điểm BC
=> M là trung điểm DE
c, Để DE đi qua A thì cần điều kiện tam giác ABC cân tại D.
Cho tam giác ABC. Các đường cao BH và CK cắt nhau tại E. Qua B kẻ Bx vuông góc với AB. Qua C kẻ Cy vuông góc với AC. Hai đường thẳng Bx và Cy cắt nhau tại D. Chứng minh tứ giác BDCE là hình bình hành - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
a,Xét tam giác ACE và tam giác ABD có:
A chung
AEC=ADB(=90)
→ACE∼ABD(g−g)
b,ACE∼ABD
→AC/AB=AE/AD
→AD/AB=AE/AC
Xét tam giác ADE và tam giác ABC có:
A chung
AD/AB=AE/AC
→ADE∼ABC(c−g−c)
→AED=ACB
Ta có: DEH=90−AED
HBC=90−DCB
→DEH=HBC (Vì AED=DCB-cmt)
Xét tam giác EHD và tam giác HBC có:
EHD=BHC
DEH=HBC
→EDH∼BCH(g−g)
→HE/HB=HD/HC
hay HE.HC=HB.HD
a: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
b: DH đi qua A
mà AH vuông góc BC(2)
nên DH vuông góc BC
DH đi qua A
mà DH cắt BC tại trung điểm của BC
nên AH cắt BC tại trung điểm của BC(1)
Từ (1), (2) suy ra ΔABC cân tại A
B K E C H A D M
a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành
b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE
Để DE đi qua A tức là D;E;A thằng hàng
mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC
hình bình hành có 2 đường chéo vuông góc là hình thoi
c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180
Mượn hình của bạn Manh nhé!
a) Ta có: DB // CK ( \(\perp\)AB)
=> DB // CE (1)
BH // DC ( \(\perp\) AC )
=> DC // BE (2)
Từ (1) ; (2) => DBEC là hình bình hành.
b) +) Theo câu a) DBEC là hình bình hành
=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.
Mà M là trung điểm BC => M là trung điểm DE.
+) CK; BH là hai đường cao của \(\Delta ABC\) và CK ; BH cắt nhau tại E.
=> E là trực tâm của \(\Delta ABC\)
=> AE là đường cao hạ từ A. (3)
Theo giả thiết DE qua A mà DE cắt BC tại M là trung điểm cạnh BC
=> AE qua trung điểm của cạnh BC
=> AE là đường trung tuyến của \(\Delta ABC\) (4)
Từ (3); (4) => \(\Delta ABC\) cân tại A
c) Em tham khảo bài làm bạn Manh.