Cho tam giác ABC có các đường cao BK và CI cắt nhau tại H. Đườn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hình bình hành

b: DH đi qua A

mà AH vuông góc BC(2)

nên DH vuông góc BC

DH đi qua A

mà DH cắt BC tại trung điểm của BC

nên AH cắt BC tại trung điểm của BC(1)

Từ (1), (2) suy ra ΔABC cân tại A

 

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm

13 tháng 10 2019

B K E C H A D M

a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành

b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE

Để DE đi qua A tức là D;E;A thằng hàng

mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC 

hình bình hành có 2 đường chéo vuông góc là hình thoi

c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180

13 tháng 10 2019

Mượn hình của bạn Manh nhé!

a) Ta có: DB // CK ( \(\perp\)AB)

=> DB // CE   (1)

BH // DC ( \(\perp\) AC )

=> DC // BE  (2)

Từ (1) ; (2) => DBEC là hình bình hành.

b) +) Theo câu a) DBEC là hình bình hành 

=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm BC => M là trung điểm DE.

+) CK; BH là hai đường cao của \(\Delta ABC\)  và CK ; BH cắt nhau tại E.

=> E là trực tâm của \(\Delta ABC\)

=> AE là đường cao hạ từ A. (3)

Theo giả thiết DE qua A  mà DE cắt BC tại M là trung điểm cạnh  BC

=> AE qua trung điểm của cạnh BC

=>  AE là đường trung tuyến  của \(\Delta ABC\) (4)

Từ (3); (4) => \(\Delta ABC\) cân tại A

c) Em tham khảo bài làm bạn Manh.

a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900;K^=I^=900;ˆAA^ chung) (3)

⇒ ˆACI=ˆABKACI^=ABK^

⇒ 900−ˆACI=900−ˆABK900−ACI^=900−ABK^

⇒ ˆHCD=ˆHBDHCD^=HBD^ (1)

xét tứ giác AKHI có

ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆAKHI^=3600−A^−HKA−^HIA^=1800−A^

tương tự ˆD=1800−ˆAD^=1800−A^

⇒ ˆKHI=ˆDKHI^=D^ (2)

từ (1) và (2) ⇒ BHCD là hình bình hành

b) từ (3) ⇒ AIAK=ACABAIAK=ACAB (4)

⇒ AI.AB = AK.AC

c) xét △AKI và △ABC có

ˆAA^ chung; (4)

⇒ △AKI ~ △ABC (c-g-c)

d) gọi K là giao của DH và BC

vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC

⇒ BDCH là hình thoi

⇒ KC = KB

⇒ △ ABK = △ ACK (c-g-c)

⇒ △ ABC cân tại A

vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi

nó bị lỗi mk gửi lại 

a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900,ˆAA^ chung) (3)

⇒ ˆACI=ˆABK

⇒ 900−ˆACI=900−ˆABK

⇒ ˆHCD=ˆHBD (1)

xét tứ giác AKHI có

ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆA

tương tự ˆD=1800−ˆAD^=1800−A^

⇒ ˆKHI=ˆD (2)

từ (1) và (2) ⇒ BHCD là hình bình hành

b) từ (3) ⇒ AI/AK=AC/AB (4)

⇒ AI.AB = AK.AC

c) xét △AKI và △ABC có

ˆAA^ chung; (4)

⇒ △AKI ~ △ABC (c-g-c)

d) gọi K là giao của DH và BC

vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC

⇒ BDCH là hình thoi

⇒ KC = KB

⇒ △ ABK = △ ACK (c-g-c)

⇒ △ ABC cân tại A

vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi