Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là giao điểm 3 phân giác của tg ABC => BG là phân giác góc EBF,
và CG là phân giác góc ACB *
góc ABE = góc FBD = α
1. α = (góc ABC) / 2
=> E, F trùng với G => góc ACE = FCD
2. α < (góc ABC) / 2
AE / FD = S(BAE) / S(BFD) (2 tg cùng đường cao) = (AB*BE*sinα / 2) / (BF*BD*sinα / 2) =
= (AB / BD)*(BE / BF) = (AG / GD)*(BE / BF) ( tính chất đường phân giác)
= (AG / GD)*(EG / GF) (do * - tính chất đường phân giác) ***
AE / FD = S(CAE) / S(CFD) (2 tg cùng đường cao) =
(AC*CE*sin(ACE) / 2) / (CF*CD*sin(FCD) / 2) = (AC / CD)*(CE / CF)*(sin(ACE) / sin(FCD)) =
(AG / GD)*(CE / CF)*(sin(ACE) / sin(FCD)) (do * - tính chất đường phân giác) ****
từ ***, **** => (CE / CF)*(sin(ACE) / sin(FCD)) = EG / GF
Giả sử góc (ACE) > góc (FCD) => sin(ACE) / sin(FCD) > 1 => CE / CF < EG / GF *****
Mặt khác góc ECG = (góc ACB) / 2 - góc (ACE) < (góc ACB) / 2 - góc (FCD) = góc GCF
nên nếu ta kẻ phân giác CG' của góc ECF thì G' nằm trong đoạn GF. Theo đl đường
phân giác có CE / CF = EG' / FG' > EG / FG' > EG / GF, mâu thuẫn với *****
=> không thể có góc (ACE) > góc (FCD)
tương tự không thể có góc (ACE) < góc (FCD)
=> góc (ACE) = góc (FCD)
3. α > (góc ABC) / 2
=> góc ABF = góc EBD => từ phần 2 có góc ACF = góc ECD
=> góc ACE = góc FCD
bài này có trong sách nâng cao và phát triển 7 nha ba ba ba
A B C D E F H I K 1 2 3 1 2 3 1 2
Trên nửa mặt phẳng bờ AB không chứa điểm C, lấy điểm I sao cho AB là đường trung trực của EI. Nối I với A và B.
Trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm H sao cho AC là đường trung trực của EH. Nối H với A và C.
Trên nửa mặt phẳng bờ BC không chứa điểm A, lấy điểm K sao cho BC là trung trực của FK. Nối K với B và C.
Nối E với K, nối F với I và H.
AB là trung trực của EI => BI=BE (Tính chất đường trung trực của đoạn thẳng)
BC là trung trực của FK => BF=BK.
Ta có: ^B3=^B1 (Theo đề bài) => ^B3+^B2=^B1+^B2 (Cộng mỗi vế với ^B2) => 2.^B3+^B2=2.^B1+^B2 (1)
Xét \(\Delta\)AIB và \(\Delta\)AEB có:
AI=AE (T/c đường trung trực)
Cạnh AB chung => \(\Delta\)AIB=\(\Delta\)AEB (c.c.c)
BI=BE (cmt)
=> ^ABI=^B3 (2 góc tương ứng) => ^ABI+^B3=2.^B3 => 2.^B3=^IBE (2)
Xét \(\Delta\)BFC và \(\Delta\)BKC có:
CF=CK (T/c đường trung trực)
Cạnh BC chung => \(\Delta\)BFC=\(\Delta\)BKC (c.c.c)
BF=BK (cmt)
=> ^B1=^CBK (2 góc tương ứng) => 2^B1=^KBF (3)
Thay (2) và (3) vào (1), ta có: ^IBE+^B2=^KBF+^B2 => ^FBI=^KBE.
Xét \(\Delta\)BIF và \(\Delta\)BEK có:
BI=BE (cmt)
^FBI=^KBE (cmt) => \(\Delta\)BIF=\(\Delta\)BEK (c.g.c)
BF=BK (cmt)
=> IF=EK (2 cạnh tương ứng) (4)
\(\Delta\)AIB=\(\Delta\)AEB (cmt) => ^BAI=^A1 (2 góc tương ứng) => ^FAI=2.^A1 (5)
AC là trung trực của EH => AE=AH. Mà AE=AI (cmt) => AH=AI.
Xét \(\Delta\)AHC và \(\Delta\)AEC có:
AH=AE (cmt)
Cạnh AC chung => \(\Delta\)AHC=\(\Delta\)AEC (c.c.c)
CH=CE (T/c trung trực)
=> ^CAH=^A2 => ^FAH=2.^A2 (6)
Mà ^A1=^A2 (Đề cho) => 2.^A1=2.^A2 (7) . Từ (5), (6) và (7) => ^FAI=^FAH
Xét \(\Delta\)FAH và \(\Delta\)FAI có:
Cạnh AF chung
^FAH=^FAI (cmt) => \(\Delta\)FAH=\(\Delta\)FAI (c.g.c) => IF=HF (2 cạnh tương ứng) (8)
AH=AI (cmt)
Từ (4) và (8) => IF=EK=HF. BC là trung trực của FK => CK=CF.
AC là trung trực của EH => CE=CH.
Xét \(\Delta\)KEC và \(\Delta\)FHC có:
EK=HF (cmt)
CK=CF (cmt) => \(\Delta\)KEC=\(\Delta\)FHC (c.c.c)
CE=CH (cmt)
=> ^KCE=^FCH (2 góc tương ứng) => ^KCF+^C2=^HCE+^C2 => ^KCF=^HCE (9)
\(\Delta\)BFC=\(\Delta\)BKC (cmt) => ^C1=^BCK (2 góc tương ứng) => ^KCF=2.^C1 (10)
\(\Delta\)AHC=\(\Delta\)AEC (cmt) => ^C3=^ACH (2 góc tương ứng) => ^HCE=2.^C3 (11)
Thay (10) và (11) vào (9), ta có: 2.^C1=2.^C3 => ^C1=^C3 hay ^ACE=^BCF (đpcm).
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC