Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D
Trên nửa mặt phẳng bờ AB không chứa C dựng tam giác đều AMD ta có
\(\widehat{DAM}=\widehat{DAB}+\widehat{BAM}=60^o\Rightarrow\widehat{DAB}=60^o-\widehat{BAM}\)
\(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}=60^o\Rightarrow\widehat{CAM}=60^o-\widehat{BAM}\)
\(\Rightarrow\widehat{DAB}=\widehat{CAM}\)
Xét tg BAD và tg CAM có
\(\widehat{DAB}=\widehat{CAM}\left(cmt\right)\)
\(AD=AM\) (cạnh của tg đều ADM) (1)
\(AB=AC\) (cạnh của tg đều ABC)
\(\Rightarrow\Delta BAD=\Delta CAM\left(c.g.c\right)\Rightarrow CM=BD\)(1)
Theo đề bài ta có \(AM^2=BM^2+CM^2\) mà \(AM=DM\) (cạnh của tg đều ADM) (2)
Thay các kết quả (1) và (2) vào biểu thức
\(\Rightarrow DM^2=BM^2+BD^2\) => Tg BDM vuông tại B (theo định lý pitago đảo) \(\Rightarrow\widehat{DBM}=90^o\)
Ta có \(\Delta BAD=\Delta CAM\left(cmt\right)\Rightarrow\widehat{ABD}=\widehat{ACM}\)
\(\widehat{MCB}=60^o-\widehat{ACM}\)
\(\widehat{MBC}=60^o-\widehat{ABM}\)
\(\Rightarrow\widehat{MBC}=180^o-\widehat{MCB}-\widehat{MBC}=180^o-60^o+\widehat{ACM}-60^o+\widehat{ABM}\)
\(\Rightarrow\widehat{MBC}=60+\widehat{ACM}+\widehat{ABM}\) mà \(\widehat{ACM}=\widehat{ABD}\left(cmt\right)\)
\(\Rightarrow\widehat{MBC}=60^o+\widehat{ABD}+\widehat{ABM}=60^o+\widehat{DBM}=60^o+90^o=150^o\)
cho tam giác ABC vuông cân tại a.M nằm trong tam giác ABC sao cho góc AMC bằng 135 do
cm MB2=MC2+2MA2
a)
A C B D Theo tính chất đường phân giác áp dụng cho \(\Delta ABC\) có BD là phân giác góc ABC \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{1}{2}\)
\(\Delta ABC\) vuông tại A\(\Rightarrow\tan B=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\widehat{B}\approx27\)
b, O C A B
Thấy \(\widehat{ACB}\) nội tiếp \(\left(O\right)\) chắn cung AB nhỏ
\(\Rightarrow\widehat{ACB}=\frac{1}{2}sđ\overline{AB}\left(1\right)\)
Thấy \(\widehat{AOB}\) chắn cung AB nhỏ \(\Rightarrow\widehat{AOB}=sđ\overline{AB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AOB}=2\widehat{ACB}=2\left(180^o-70^o-60^o\right)=2.50^o=100^o\)
thưa ... bạn ... mình ... chịu