Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A M D W
a) Theo đề bài, ta có:
\(\widehat{B}\)>\(\widehat{C}\)
Mà đối diện với \(\widehat{B}\) là cạnh AC, đối diện với \(\widehat{C}\) là cạnh AB
=>AC>AB
b) Xét \(\Delta\)AMB và \(\Delta\)DMC, ta có:
AM=MD (gt)
MB=MC (gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\) (đối đỉnh)
Do đó: \(\Delta\)AMB=\(\Delta\)DMC (c-g-c)
=> AB=CD (2 cạnh tương ứng)
mà AC>AB
nên AC>CD
=> \(\widehat{CDA}\)=\(\widehat{CAD}\)
A B C H I E D
ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )
và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)
suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )
b) xét \(\Delta IAH \)và \(\Delta ICE\)có
IA = IC (gt)
IH =IE (gt)
góc HIA = góc EIC ( đối đỉnh )
do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)
suy ra AH = EC ( 2 cạnh tương ứng )
và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )
xét \(\Delta HAC\)và \(\Delta ECA\)có
AH = EC (cmt)
góc HAI = góc ECA (cmt)
AC là cạnh chung
do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)
suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)
mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)
hay \(CE⊥AE\)
A B C x D M
a, Xét t/g BAM và t/g CAM có:
AB = AC (gt)
MB = MC (gt)
AM : cạnh chung
Do đó t/g BAM = t/g CAM (c.c.c)
b, Vì AB = AC (gt) => t/g ABC cân tại A => góc B = góc C
c, Ta có: góc xAD + góc CAD = góc B + góc C
Mà góc xAD = góc CAD ; góc B = góc C
=> \(2\widehat{CAD}=2\widehat{C}\)
=> góc CAD = góc C
Mà 2 góc này ở vị trí so le trong
=> AD // BC
a,Vì tam giác ABC có AB=AC
=>tam giác ABC cân tại A.
M là trung điểm BC=>BM=MC
Có AM là cạnh chung.
=>tam giác BAM=CAM
b,Do tam giác ABC cân tại A
=>^B=^C
a) Theo mối quan hệ giữa cạnh và góc trong tam giác:
\(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)
b) Dễ thấy \(\Delta ABM=\Delta DCM\left(c-g-c\right)\Rightarrow AB=CD\)
Do AC > AB nên AC > CD.
Xét tam giác ACD có AC > CD nên \(\widehat{CDA}>\widehat{CAD}\)
c) Do \(\Delta ABM=\Delta DCM\Rightarrow\widehat{CDA}=\widehat{BAD}\)
Vậy nên \(\widehat{BAM}>\widehat{CAM}\)
Suy ra tia phân giác AJ nằm trong góc BAM hay nằm ngoài góc CAM.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm