K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)

16 tháng 12 2015

a) \(\Delta\)AHB =\(\Delta\)DHB ( c-g-c) vì có AH =DH ; góc AHB =DHB = 90 và BH chng

b) théo a  => AB = DB (1)

ta chứng minh dc \(\Delta\) HDC =\(\Delta\)HAC ( c-g-c)

=> AC =DC (2)

(1)(2) và BC chung => \(\Delta\) ABC =\(\Delta\)DBC => 

BDC= BAC =90

=> BD vuông góc với CD

A B D H C

a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:

\(AH=DH\left(gt\right)\)

BH là cạnh chung

\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)

\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)

b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )

21 tháng 3 2020

A)Xét t/giác AHB và t/giác DHB có

    AH=AD(gt)

  Góc AHB=góc DHB=900

  BH là cạnh chung

Suy ra t/giác AHB=t/giác DHB(c-g-c)

B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)

Suy ra :BC là tia phân giác của góc ABD

C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N 

  AM=FM(gt)

  Góc AHM= góc FMN(2 góc đối đỉnh)

Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)

Suy ra AH=NF (2 cạnh tương ứng)

Mà AH=HD (gt)

Suy ra NF=HD

Chúc bn hc tốt

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

28 tháng 11 2016

A B C H E D I

a) xét tam giác AHB và tam giác AHD ta có

AH=AH ( cạnh chung)

BH=HD(gt)

góc AHB= góc AHD (=90)

-> tam giác AHB= tam giác AHD (c-g-c)

b) ta có

DE vuông góc AC (gt)

AB vuông góc AC ( tam giác ABC vuông tại A)

-> DE//AB

ta có

AC>AB (gt)

-> góc ABC > góc ACB ( quan hệ cạnh góc đối diện trong tam giác)

c) Xét tam giác AHB và tam giác IHD ta có

AH=HI (gt)
BH=HD(gt)

góc AHB= góc IHD (=90)

-> tam giac AHB = tam giác IHD (c-g-c)

-> góc BAH= góc HID ( 2 góc tương ứng )

mà 2 góc nẳm ở vị trí sole trong 

nên BA//ID

ta có

BA//ID (cmt)

BA//DE (cm b)

-> ID trùng DE

-> I,E,D thẳng hàng