K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

Giúp tớ giải câu này nhé :((

28 tháng 4 2020

a, Vì MD là phân giác AMB \(\Rightarrow\frac{AD}{AM}=\frac{BD}{BM}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\)\(\Rightarrow\frac{AD}{BD}=\frac{AM}{CM}\)(MB = MC)

Vì ME là phân giác AMC \(\Rightarrow\frac{AE}{AM}=\frac{EC}{MC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)

\(\Rightarrow\frac{AE}{EC}=\frac{AD}{BD}\) => DE // BC (định lý Thales đảo)

b, Vì DE // BE (cmt) \(\Rightarrow\frac{DO}{BM}=\frac{AO}{OM}\)(Hệ quả định lý Thales)  và \(\frac{OE}{MC}=\frac{OA}{OM}\) (Hệ quả định lý Thales)

\(\Rightarrow\frac{DO}{BM}=\frac{OE}{MC}\) 

Mà BM = MC (gt)

=> DO = OE

2 tháng 4 2023

Giai dùm câu d

8 tháng 2 2019

a) Ta có: AB^2 + AC^2 = 21^2 + 28^2 = 35^2 = BC^2 
Vậy Tam giác ABC vuông tại A (đl Pytago đảo) 
b) Ta có: Góc B + góc C = 90 độ (cmt câu a) 
Góc HAC + góc C = 90 độ (Tam giác HAC vuông tại H) 
=> Góc B = góc HAC 
Mà Góc AHB= Góc AHC = 90 độ (Đường cao AH) 
Vậy Tam giác HBA ~ tam giác HAC (góc - góc) 
c) 
Theo tính chất đường phân giác trong tam giác: 
MB/ AB = MC / AC 
<=> MB. AC = MC . AB 
<=> MB . AC = (35- MB) . AB 
<=> 35AB= MB.(AB+AC) 
<=> MB = 35AB/(AB+AC) = 35.21/(21+28) = 15 cm 
=> MC= 35 - 15 = 20 cm 
Vậy MB = 15 cm, MC 20 cm 
(Bạn tự vẽ hình và ghi giả thuyết kết luận nhé!)

11 tháng 2 2019

Bạn ơi vẽ hình làm sao ạ

18 tháng 2 2020

Ad olm hay ai đó giỏi toán giúp với

a,xét tam giác AMB và ANC có:MB=CN(gt)

tam giác AMN cân tại A(gt)=>AM=AN(đn)và góc AMN=góc ANM(tc)

=>tam giác AMB =tam giác ANC(c-g-c)

=>tam giác ABC cân tại A

b,tam giác AMB=tam giác ANC(cm trên)

góc ABM=góc ACN

góc ABM+góc MBH=180°

góc ACN +góc NCK=180°

=>góc MBH=góc NCK

xét tam giác MBH và NCK có MB=CN(gt)

góc MHB= góc CKN (MH vuông góc AB.NK vuông góc AC)(gt)

=>tam giác MBH=tam giác NCK (cạnh huyền-góc nhọn)

c, tam giác MBH= tam giác NCK (cm câu b)

=>góc BMH= góc CNK

=> tam giác MNO cân tại O

#Thiên#

Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh a) Tam giác ABH đồng dạng tam giác ACE b) Tam giác BHC đồng dạng tam giác CFA c) Tổng AB.AE+AD.AF không đổi Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh: a) IH.AB=IA.BH b) BHA đồng dạng BAC...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD có đường chéo AC>DB. Vẽ CE vuông góc đường thẳng AB tại E, vẽ CF vuông góc đường thẳng AD tại F. Chứng minh 
a) Tam giác ABH đồng dạng tam giác ACE 
b) Tam giác BHC đồng dạng tam giác CFA 
c) Tổng AB.AE+AD.AF không đổi 
Câu 2: Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC) và phân giác BE của ABC(E thuộc AC) cắt nhau tại I. Chứng minh: 
a) IH.AB=IA.BH 
b) BHA đồng dạng BAC => AB^2=BH.BC 
c) IH/IA = AE/EC 
d) AIE cân 
Câu 3: Cho góc nhọn xOy, lần lượt lấy trên Ox các điểm A,B sao cho OA= 3 cm, OB=10cm. Trên Oy lấy lần lượt các điểm C,D sao cho OC=5cm, OD=6cm. Hai đoạn thẳngAD và BC cắt nhau tại I: 
a) AOD đồng dạng COB 
b) AIB đồng dạng CID 
c) IA.ID=IC.IB 
d) Cho diện tích ICD= 3 cm^2. Hãy tính diện tích của IAB?

0