Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E F I G
a/
Ta có
FA=FC; GB=GC => GF là đường trung bình của tg ABC
=> GF//AB Mà \(AB\perp AC\)
\(\Rightarrow GF\perp AC\)
=> AEGF là hình thang vuông tại A và F
b/
EI//BF (gt)
GF//AB => FI//BE
=> BEIF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
c/
Ta có GF là đường trung bình của tg ABC \(\Rightarrow GF=\dfrac{1}{2}AB\)
BEIF là hbh (cmt) =>FI=EB
Mà \(EA=EB=\dfrac{1}{2}AB\)
=> GF=FI
Ta có
FA=FC
=> AGCI là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Mà \(GF\perp AC\Rightarrow GI\perp AC\)
=> AGCI là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)
d/
Để AGCI là hình vuông \(\Rightarrow AG\perp BC\) => AG là đường cao của tg ABC
Mà GB=GC => AG là đường trung tuyến của tg ABC
=> tg ABC là tg cân tại A (Tam giác có đường cao và đồng thời là đường trung tuyến là tg cân)
Mà \(\widehat{A}=90^o\) (gt)
=> Đk để AGCI là hình vuông thì tg ABC phải là tg vuông cân tại A
Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp tran cong hoai giải bài toán này.
a: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
b: AC=8cm
\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: Đề sai rồi bạn
AM//NB mà
a: Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
mà AD là tia phân giác
nên AEDF là hình thoi
a: Xét tứ giác BFED có
BF//ED
FE//BD
DO đó: BFED là hình bình hành
Suy ra: BF=ED(1)
Xét ΔEAD có góc EAD=góc EDA
nên ΔEAD cân tại E
=>EA=ED(2)
Từ (1) và (2) suy ra BF=EA
b: góc GAE=90 độ-góc DAE
góc EGA=90 độ-góc EDA
mà góc DAE=góc EDA
nên góc GAE=góc EGA
=>ΔEAG cân tại E
=>EA=EG=ED
=>E là trung điểm của DG
giả thiết câu sau bị sai
uk thế giúp mik câu a đi để mik KT lại giả thiết