Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(Đl pytago)
Thay số:36+64=BC^2
=>BC= căn 100=10cm
Xét tam giác ABC có BD là phân giác góc ABC(gt),có:
AB/AC=AD/DC(Tính chất đường phân giác trong tam giác)
<=>AB/AB+AC=AD/AD+DC(Tính chất tỉ lệ thức)
Thay số:6/16=AD/8
<=>16AD=48
<=>AD=3cm
Vì D thuộc AC(gt)
=>AD+DC=AC
Thay số:3+DC=8
<=>DC=5cm
b) Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.10)/2=24
<=>AH=24.2÷10=4,8cm
Xét tam giác ABC đồng dạng tam giác HAC có:
+Góc C chung
+Góc AHC=góc BAC=90 độ
=>tam giác ABC đồng dạng tam giác HAC(g.g)
=> AH/AB=CH/AC(Cặp cạnh tương ứng)
Thay số : 4,8/6=CH/8
=>CH=4,8.8÷6=6,4cm
c)
A B C H E F I K 1 1 1
a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=4,8\left(cm\right)\)
b) Xét tam giác AEH và tam giác AHB có:
\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)
c) Xét tam giác AHC và tam giác AFH có:
\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)
\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ )
\(\Rightarrow AH^2=AC.AF\)
d) Xét tứ giác AEHF có:
\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)
\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )
\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)
Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)
\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)
Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)
Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)
Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)
Xét tam giác ABC và tam giác AFE có:
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)
e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)
Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC
\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc) (6)
Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF
\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc) (7)
Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)
\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)
A B C E H I
a/ Xét tg vuông ABH có
\(\widehat{B}=90^o-\widehat{BAH}=90^o-2\widehat{C}\)
\(\widehat{A}=180^0-\widehat{B}-\widehat{C}=180^o-90^o+2\widehat{C}-\widehat{C}=90^o+\widehat{C}\)
Ta có
\(\widehat{BAI}=\widehat{HAI}=\dfrac{\widehat{BAH}}{2}=\dfrac{2\widehat{C}}{2}=\widehat{C}\)
Ta có
\(\widehat{A}=\widehat{BAI}+\widehat{EAI}=\widehat{C}+\widehat{EAI}=90^o+\widehat{C}\Rightarrow\widehat{EAI}=90^o\) (1)
Xét tg ABI có
\(\widehat{AIE}=\widehat{ABI}+\widehat{BAI}=\dfrac{\widehat{B}}{2}+\widehat{C}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)
Xét tg BCE có
\(\widehat{AEI}=\widehat{EBC}+\widehat{C}=\dfrac{\widehat{B}}{2}+\widehat{C}\)
\(\Rightarrow\widehat{AIE}=\widehat{AEI}\) (2)
Từ (1) và (2) => tg AIE vuông cân tại A \(\Rightarrow\widehat{AIE}=\widehat{AEI}=45^o\)
b/
Xét tg ABH
Nối HI => HI là phân giác của \(\widehat{AHB}\) (trong tg 3 đường phân giác đồng quy) \(\Rightarrow\widehat{AHI}=\widehat{BHI}=45^o\)
Ta có \(\widehat{AIE}=\widehat{AEI}=45^o\) (cmt)
\(\Rightarrow\widehat{AEI}=\widehat{AHI}=45^o\)
=> tứ giác AEHI là tứ giác nội tiếp
\(\Rightarrow\widehat{AHE}=\widehat{AIE}=45^o\) (góc nội tiếp cùng chắn cung AE)
\(\Rightarrow\widehat{CHE}=\widehat{AHC}-\widehat{AHE}=90^o-45^o=45^o\)
\(\Rightarrow\widehat{AHE}=\widehat{CHE}=45^o\) => HE là phân giác của \(\widehat{AHC}\)