K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2022

- Đề sai hết rồi bạn.

mk ko bt lm câu b nha ~ xl

c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)

=> DM = AD = AM

Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)

=> BD = MC (cặp cạnh tương ứng)

Ta có: DM = AM, BD = MC

=> DM : BM : BD = 3:4:5

=> tam giác BDM vuông tại M

=> góc AMB = 90o + 60o = 150o

10 tháng 7 2019

A B C M E

a) Xét tam giác: AMB và AMC có:

AM chung

BM=CM ( gt)

AB=AC ( tam giác ABC đều)

=> Tam giác AMB =Tam giác AMC (1)

b) Xét tam giác MBC vuông cân tại M

=> \(\widehat{MCB}=\frac{90^o}{2}=45^o\)

Tam giác ABC đều 

=> \(\widehat{ACB}=60^o\)

=> \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)

\(\widehat{BCE}=\widehat{MCB}-\widehat{ECM}=45^o-30^o=15^o\)

=> \(\widehat{ACM}=\widehat{BCE}\)(2)

Từ (1) => \(\widehat{MAB}=\widehat{MAC}\) mà \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}=60^o\)

=> \(\widehat{MAB}=\widehat{MAC}=60^o:2=30^o\)

=> \(\widehat{EBC}=\widehat{MAC}\left(=30^o\right)\)(3)

Xét tam giác MCA và tam giác ECB

có: AC=CB ( tam giác ABC đều)

\(\widehat{ACM}=\widehat{BCE}\)( theo (2))

\(\widehat{EBC}=\widehat{MAC}\)( theo (3))

=> Tam giác MCA =Tam giác ECB

=> CM=CE

=> tam giác MEC cân

10 tháng 7 2019

M A B C N 3 4 5 3 3

Câu c) Trên nửa mặt phẳng bờ AM  không chứa điểm C dựng tam giác đều AMN

=> \(\widehat{AMN}=60^o\)

và NA=NM=AM

Ta có: \(\widehat{NAB}+\widehat{BAM}=\widehat{NAM}=60^o=\widehat{BAC}=\widehat{BAM}+\widehat{MAC}\)

=> \(\widehat{NAB}=\widehat{MAC}\)(1)

Xét tam giác NAB và tam giác MAC 

có: AB=AC ( tam giác ABC đều)
NA=AM ( tam giác AMN đều)

\(\widehat{NAB}=\widehat{MAC}\)( theo (1))

=> Tam giác NAB=MAC

=> NB=MC

Suy ra: MN:BM:NB=MA:MB:MC=3:4:5

=> Tam giác NMB vuông tại M

=> \(\widehat{NMB}=90^o\)

=> \(\widehat{AMB}=\widehat{AMN}+\widehat{NMB}=60^o+90^o=150^o\)

10 tháng 7 2019

Em tham khảo nhé!

Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath

18 tháng 4 2016

m ko là giao điểm của be vs cd đc

18 tháng 4 2016

A B C D E M

16 tháng 8 2016

Câu 1: (bạn tự vẽ hình nhé)

a) Xét \(\Delta\)BAH và \(\Delta\)CAH :

AHB^ = AHC^  = 90o                    

AB = AC 

ABH^ = ACH^

=> \(\Delta\)BAH = \(\Delta\)CAH (cạnh huyền _ góc nhọn)                (2)

=> BH = CH (2 cạnh tương ứng)          (1) 

Mà BH + CH = BC

<=> 2 * BH = 6

BH = 3 (cm)

ABH^ = ACH^ 

Áp dụng định lý Py-ta-go vào \(\Delta\)ABH:

BH^2 + AH^2 = AB^2

AH^2 = AB^2 - BH^2 = 5^2 - 3^2 = 25 - 9 = 16 (cm)

\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)

b) Từ (1)  => AH là đường trung tuyến của \(\Delta\)BAC

=> A, G, H thẳng hàng.

c)  Từ (2) => BAH^ = CAH^ hay BAG^ = CAG^ 

Xét \(\Delta\)BAG và \(\Delta\)CAG:

AB = AC 

BAG^ = CAG^ 

AG chung

=> \(\Delta\)BAG = \(\Delta\)CAG (c.g.c)

=> ABG^ = ACG^ (2 góc tương ứng)

6 tháng 8 2017

Cho tam giác ABC cân tại A gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó.CM:

BG<BI<BA

GÓC IBG =góc ICG

Xác định vị trí của điểm M sao cho tổng các độ dài BM+MC có giá trị nhỏ nhất đoạn AB

10 tháng 2 2020

a) Vì ΔABMΔABM vuông cân tại A(gt)A(gt)

=> AM=ABAM=AB (tính chất tam giác vuông cân).

Vì ΔACNΔACN vuông cân tại A(gt)A(gt)

=> AC=ANAC=AN (tính chất tam giác vuông cân).

Ta có: A2ˆ=A3ˆ=900(gt)A2^=A3^=900(gt)

=> A1ˆ+A2ˆ=A1ˆ+A3ˆA1^+A2^=A1^+A3^

=> MACˆ=NABˆ.MAC^=NAB^.

Xét 2 ΔΔ AMCAMC và ABNABN có:

AM=AB(cmt)AM=AB(cmt)

MACˆ=NABˆ(cmt)MAC^=NAB^(cmt)

AC=AN(cmt)AC=AN(cmt)

=> ΔAMC=ΔABN(c−g−c).ΔAMC=ΔABN(c−g−c).

b) Theo câu a) ta có ΔAMC=ΔABN.ΔAMC=ΔABN.

=> ACMˆ=ANBˆACM^=ANB^ (2 góc tương ứng).

Hay ACMˆ=ANIˆ.ACM^=ANI^.

Lại có: AINˆ=CIKˆAIN^=CIK^ (vì 2 góc đối đỉnh).

Vì ΔANIΔANI vuông tại A(gt)A(gt)

=> ANIˆ+AINˆ=900ANI^+AIN^=900 (tính chất tam giác vuông).

Mà {ACMˆ=ANIˆ(cmt)AINˆ=CIKˆ(cmt){ACM^=ANI^(cmt)AIN^=CIK^(cmt)

=> ACMˆ+CIKˆ=900.ACM^+CIK^=900.

Xét ΔKICΔKIC có:

IKCˆ+ACMˆ+CIKˆ=1800IKC^+ACM^+CIK^=1800 (vì 2 góc đối đỉnh).

=> IKCˆ+900=1800IKC^+900=1800

=> IKCˆ=900.IKC^=900.

=> IK⊥CK.IK⊥CK.

Hay BN⊥CM.BN⊥CM.

bn k mik nha

10 tháng 2 2020

N A C M B

a) Thấy \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{CAN}+\widehat{BAC}=\widehat{BAN}\)

Từ đây ta xét t/g MAC và BAN ta có:

=>MA=BA; AC=AN

=>\(\widehat{MAC}=\widehat{BAN}\)

=>\(\Delta MAC=\Delta BAN\left(c-g-c\right)\Rightarrow MC=BN\)

đpcm.

b)

Ta gọi giao điểm của MC  và BN là 1 điểm D

Ta có: \(\widehat{DBA}=\widehat{DMA}\left(\Delta MAC=\Delta BAN\left(c-g-c\right)\right)\)

Nên \(\widehat{MBD}+\widehat{BMD}=\widehat{MBA}+\widehat{DBA}+\widehat{BMD}=\widehat{MBA}+\widehat{DMA}+\widehat{BMD}=\widehat{MBA}\)

\(+\widehat{BMA}=90^o\)

Xét t/g MBD có \(\widehat{MBD}+\widehat{BMD}=90^o\Rightarrow\widehat{BMD}=90^o\)

\(\Rightarrow BN\perp MC\)

Bổ sung D giao điểm nhé vào hình nha bn.

c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm

Áp dụng định lý pi-ta-go ta có:

Cho t/g MAB và NAC thì MB=NC=\(4\sqrt{2}\left(cm\right)\)

Khi ABC đều cạnh 4cm thì AMC = NAB là t/g  vuông cân có  góc ở đỉnh : 90o+60o=150o

=>\(\widehat{AMC}=\widehat{ACM}\)= (180o-150o):2=15o

Thì \(\widehat{MCB}=\widehat{ACB}-\widehat{ACM}=60^o-15^o=45^o\)

Lại có \(\widehat{MAN}=360^o-90^o-60^o-90^o=120^o\)

Vì t/gMAN cân tại A nên \(\widehat{AMN}\)= (180o-120o) : 2 =30o

=> \(\widehat{CNM}=30^o+15^o=45^o\)

=>\(\widehat{CNM}=\widehat{MCB}\)

=> BC//MN ( so le trong)

đpcm.

c tự lm nhaaaaaaaaaaaaaaaaaaaaaaaa

í lộn a,b tự lm nhaaaaaaaaaaaaaaaaaaaaaaaaaa