Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thảo khảo phần tính tỉ lệ độ dài các cạnh tại đây:
Câu hỏi của Đỗ Huy Hiển - Toán lớp 7 - Học toán với OnlineMath
Sau đó ta có: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a+b+c}{31}=\frac{62}{31}=2\)
\(\Rightarrow a=20\left(cm\right);b=30\left(cm\right);c=12\left(cm\right)\)
TA có
2S = a.ha = b.hb = c.hc
<=> 3a = 4b = 5c
<=> \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}=t\) ( t > 0 )
=> a= 20t ; b = 15t ; c = 12t
b^2 + c^2 = (15t)^2 + ( 12t)^2 = 225t^2 + 144t^2 = 369t^2 < 400t^2 = (20t)^2 = a^2
=> b^2 + c^2 < a^2
Ta có : a.ha = b.hb = c.hc (cùng = 2 lần diện tích tam giác)
=> 3a = 4b = 5c => \(\frac{3a}{60}=\frac{4b}{60}=\frac{5c}{60}\)=> \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}\) = k ( k > 0 ) => a = 20k ; b = 15.k; c = 12.k
=> a2 = 400k2; b2 = 225k2 ; c2 = 144k2
=> b2 + c2 = 369k2 < 400.k2 => b2 + c2 < a2
Vậy....
Giải:
Gọi 3 cạnh tương ứng của 3 đường cao \(h_a,h_b,h_c\) là a, b, c \(\left(a,b,c>0\right)\)
Ta có: \(\frac{a.h_a}{2}=\frac{b.h_b}{2}=\frac{c.h_c}{2}\)
\(\Rightarrow a.h_a=b.h_b=c.h_c\)
\(\Rightarrow4a.\frac{h_a}{4}=5b.\frac{h_b}{5}=6c.\frac{h_c}{6}\)
Mà \(\frac{h_a}{4}=\frac{h_b}{5}=\frac{h_c}{6}\)
\(\Rightarrow4a=5b=6c\)
\(\Rightarrow\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=\frac{37}{\frac{37}{60}}=60\)
\(\left\{\begin{matrix}\frac{a}{\frac{1}{4}}=60\\\frac{b}{\frac{1}{5}}=60\\\frac{c}{\frac{1}{6}}=60\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=15\\b=12\\c=10\end{matrix}\right.\)
Vậy độ dài 3 cạnh của t/g lần lượt là 15, 12, 10
gọi 3 đường cao ha ; hb;hc lần lượt là a, b, c
Theo bài ra ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\) và a+b+c=37
Áp dụng t/c dãy tỉ số = nhau ta có
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+b+c}{4+5+6}=\frac{37}{15}\)
=>\(\frac{a}{4}=\frac{37}{15}=>a=\frac{37.4}{15}\)=>a=\(\frac{148}{15}\)
\(\frac{b}{5}=\frac{37}{15}=>b=\frac{37.5}{15}=>b=\frac{37}{3}\)
\(\frac{c}{6}=\frac{37}{15}=>c=\frac{37.6}{15}=>c=\frac{222}{15}\)
Vậy độ dài 3 đường cao của tam giác ABC là \(\frac{148}{15}cm;\frac{37}{3}cm;\frac{222}{15}cm\)
Anh ơi anh trình bày em coi câu b được không ak?? Đầu óc em đang quay cuồng chưa biết trình bày ntn :>
Hướng dẫn thôi nhé, hình thì làm biếng quá:
Gọi hai đường cao lần lượt là \(AH=h_a\) và \(BK=h_b\)
a/ Xét hai tam giác vuông AHB và BKA
b/ Theo định lý đường xiên - đường vuông góc \(h_b\le a\)
Dấu "=" xảy ra khi tam giác vuông tại C
c/ Vẫn theo định lý đường xiên - đường vuông góc:
\(\left\{{}\begin{matrix}a=h_a\le b\\b=h_b\le a\end{matrix}\right.\) \(\Rightarrow a=b\) đồng thời tam giác vuông tại C
Vậy tam giác vuông cân tại C