Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)
Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)
Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn
ta có A+B+C = ∏∏
nên C=∏∏ -(A+B)
nên ta có sin(A+B)=sinC , cos(A+B)=-cosC
ta có sin2A+sin2B+sin2C
=2sin(A+B)cos(A-B) + 2 sinCcosC
=2sinCcos(A-B)+2sinCcosC
=2sinC ( cos(A-B) + cosC)
=2sinC ( cos(A-B) - cos(A+B))
=2sinC.2sinAsinB
=4sinAsinBsinC
Giả thiết tương đương:
\(a^4+b^4+c^4+2b^2c^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow a^4+\left(b^2+c^2\right)^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2=2b^2c^2\)
\(\Leftrightarrow b^2+c^2-a^2=\pm\sqrt{2}bc\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\pm\sqrt{2}bc}{2bc}=\pm\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}A=45^0\\A=135^0\end{matrix}\right.\)
\(a^2=\frac{a^3-b^3-c^3}{a-b-c}\)
<=> \(a^2\left(b+c\right)=b^3+c^3\)
<=> \(a^2=b^2+c^2-bc\)(1)
Theo đlí cosin ta có: \(a^2=b^2+c^2-2bc.\cos A\)(2)
Từ (1) ; (2) => \(2\cos A=1\)
<=> \(\cos A=\frac{1}{2}\)
=> ^A = 60 độ
Lời giải:
a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{b+c}{\sin B+\sin C}=\frac{2a}{\sin B+\sin C}\)
\(\Rightarrow \frac{1}{\sin A}=\frac{2}{\sin B+\sin C}\)
\(\Rightarrow 2\sin A=\sin B+\sin C\) (đpcm)
b) Theo định lý sin ta có:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
\(\Rightarrow (\frac{a}{\sin A})^2=\frac{b}{\sin B}.\frac{c}{\sin C}=\frac{a^2}{\sin B.\sin C}\)
\(\Rightarrow \sin ^2A=\sin B.\sin C\) (đpcm)
a) bc=a2 suy ra 2RsinB.2RsinC=(2RsinA)2=4RsinA2
suy ra sinB.sinC=sinA2
còn cái còn lại bạn dựa vào công thức tính diên tích nhé
chứng minh ha2=hb.hc
ta có S=\(\dfrac{1}{2}a.h_a=\dfrac{1}{2}bh_b=\dfrac{1}{2}ch_c\)
suy ra : 2S=a.ha=bhb=chc
suy ra : a2ha2=b.c.hb.hc mà a2=b.c
suy ra : ha2=hb.hc
Ta có: \(bc=2a^2\sin B.\sin C\)
=> \(2a^2.\frac{\sin B}{b}.\frac{\sin C}{c}=1\)
=> \(2a^2.\frac{\sin^2A}{a^2}=1\)
=> \(2\sin^2A-1=0\)
=> \(\cos2A=0\)
<=> \(2A=\frac{\pi}{2}+k\pi\)
<=> \(A=\frac{\pi}{4}+\frac{k\pi}{2}\)
Vì \(0< A< \pi\)
=> \(A=\frac{\pi}{4}\) hoặc \(A=\frac{3\pi}{4}\)